
PSS – Person Search System

PSS – Person Search System

Paul Ridgway
Matthew Rowe

PSS – Person Search System

Outline

•  Motivation
•  Approach

–  Crawling
–  Indexing
–  Information Extraction
–  Clustering

•  Conclusions
•  Future Work

PSS – Person Search System

Motivation

•  Web users increasingly use the Web to search for information
about specific people, however:
–  Person names are ambiguous

PSS – Person Search System

PSS – Person Search System

Motivation

•  Web users increasingly use the Web to search for information
about specific people, however:
–  Person names are ambiguous

•  Current people search engines do not disambiguate
–  Concentrate on specific content sources
–  Limits information found: domain specific patterns

•  Limited in extracting information from new web documents

PSS – Person Search System

PSS – Person Search System

PSS – Person Search System

Motivation

•  Web users increasingly use the Web to search for information
about specific people, however:
–  Person names are ambiguous

•  Current people search engines do not disambiguate
–  Concentrate on specific content sources
–  Limits information found: domain specific patterns

•  Limited in extracting information from new web documents

•  Our solution = PSS (Person Search System)
–  Crawl the Web
–  Extract person information
–  Disambiguate between namesakes

PSS – Person Search System

Approach
•  Build a “Reverse Index of Names”

–  Allowing pages containing specific names to be quickly located
–  Achieved by

•  Crawling The Web
•  Indexing Content

•  Cluster based on Full Name
–  Create a list of URLs which contain names

•  Query the index looking of instances of adjacent First and Last names
–  Extract Content Windows from URLs
–  Identify features in Content Windows
–  Cluster URLs based on window features

•  Web based interface for searching and clustering online
–  Clustering is expensive so clusters are temporarily cached
–  Offline clustering of popular names can also be enabled

PSS – Person Search System

Crawling: Summary

•  In the simplest form
–  Crawl a page from the Queue

•  Download the Page
•  Extract links

–  Queue links not yet crawled
•  Start over

•  Problems
–  Too many to list!
–  Main problems

•  Storage (needed for indexing too)
•  Scalability
•  Large scale “politeness”
•  Required continuous monitoring

•  Re-crawling
–  Not implemented, however the infrastructure supports it

PSS – Person Search System

Crawling: Approach

PSS – Person Search System

Crawling: Problems - Storage

•  Crawling the Web requires lots of information to be stored
–  Even if not indexing or caching pages!
–  Lots of crawled pages must be stored
–  Queued URLs must be stored
–  Ideally (realistically) the data must be stored logically

•  Solution:
–  Scalable Storage

•  Hadoop HDFS
–  Scalable Database System

•  Hadoop HBase

PSS – Person Search System

Crawling: Problems - Storage

•  The Hadoop Distributed File System (HDFS) is a distributed
file system designed to run on “commodity hardware” clusters.
–  Files are broken up into chunks (64 Mb)
–  Chunks are distributed across the cluster and replicated several

(three) times.
•  Hadoop HBase is a distributed database system aimed at

situations where a table could have billions of rows and
millions of columns requiring random read/write access
–  Scales instantly by adding new “region servers” which host row

based regions of tables stored on HDFS

PSS – Person Search System

HBase Table Example

Row crawled:/ crawled:/
imghp

crawled:/links seen:/about crawled:/robots.txt

google.com 10:32 AM 10:33 AM 10:31 AM

shef.ac.uk 11:42 AM 09:12 AM 09:10 AM

The example below shows a table used to track when URLs were crawled and
discovered

•  Each row can have completely different columns as they are not defined by
any schema.

•  The prefix on each row (crawled: or seen:) is known as the column family.
These are predefined in the schema.

•  Each column family can have specific parameters
•  TTL (Time to Live) – Expiry
•  Versions – Each cell also has an internal timestamp allowing the order of

versions to be determined
•  ALL data (rows, column families, columns and cells) are byte arrays

•  Very flexible!

PSS – Person Search System

Crawling: Problems – Scalability

PSS – Person Search System

Crawling: Problems – Scalability

•  As URLs are discovered they are added to a HBase table
‘discovered’
–  The row they are added to corresponds to time of discovery, to the

nearest second. This is known as a discovery window.
•  Each column is a URL found
•  The cell value is essentially pointless

–  The windows are processed sequentially by the Queuer
•  The window is emptied
•  Each URL is checked against the ‘history’ table and duplicates are

removed
•  The URL is then checked against the appropriate robots file

–  Robots data is cached and prefetched for performance
•  The resulting URLs are queued AND added to the ‘history’ table

–  Domain based rows for quick lookups
–  Once in the history table a URL will not make it through the queuer again

PSS – Person Search System

Crawling: Problems - Politeness

•  When crawling lots of pages as quickly as possible it is easy to over
crawl a site
–  especially if it is a link-rich seed site
–  or contains a sitemap, allowing rapid discovery of all internal links

•  Solution
–  Time frame based crawl queue

•  As URLs are discovered they are put into the queue
•  The queue is broken up into frames
•  Each frame, at most can only contain one URL from each domain
•  If a frame is emptied in under a second a wait (sleep) is imposed until a

second has elapsed
•  Therefore:

–  NO domain is crawled more than once per second
–  Re-crawl delay in robots can be adhered to

»  Add domain every n frames, where n is the re-crawl delay in seconds

PSS – Person Search System

Crawling: Problems - Politeness

•  Frames are allowed a limited number of URLs to ensure emptier
frames can be balanced out so that sleeps are not required

•  Framed Queue example:

•  Quick note: Robots rules are applied to discovered URLs before
adding them to queue frames

•  The last frame used by a domain and robots data is stored in a
`politeness` table

http://www.shef.ac.uk/
http://www.dcs.shef.ac.uk/
http://www.google.com/
http://www.w3c.org/
http://www.internic.net/
http://www.dell.com/
http://www.192.com/
http://www.123people.com/
http://oak.dcs.shef.ac.uk/

http://www.shef.ac.uk/links/
http://www.dcs.shef.ac.uk/intranet/
http://www.google.com/imghp/
http://www.dell.com/sales/
http://www.192.com/directory/
http://oak.dcs.shef.ac.uk/tools/

http://www.shef.ac.uk/about/
http://www.google.com/news/
http://www.192.com/search/
http://oak.dcs.shef.ac.uk/blog.

PSS – Person Search System

Crawling: Monitoring
•  Events occur very rapidly when crawling on a large scale

•  A bug may cause a server to get ‘abused’ by the crawler
•  A core process may crash
•  Too many network connections may take out a router
•  All of these happened in 30 minutes at one point

•  Crawl started
•  I went to bed
•  HBase died
•  Time wasted…

PSS – Person Search System

Crawling: Monitoring

PSS – Person Search System

Crawling: Monitoring

PSS – Person Search System

PSS – Person Search System

Crawling: Monitoring

PSS – Person Search System

Crawling: Implementation

•  The queuer takes
discovered URLs from
Windows on a per
window basis.

•  Checks the URLs against
history.

•  Checks against Robots
•  Remaining URLs are

queued in frames

•  Sequentially examines
Discovery Windows at least
30 windows ahead of the
queuer

•  Fetches and caches robots
data if needed

•  Only proceeds up to 600
frames in advance as robots
cache expires after 24 hours

•  Crawlers asynchronously request
new URLs to crawl

•  URLs are extracted from the
Queue synchronously and
without violating the 1 second
delay

•  Several thousand URLs are
cached in memory to cope with
burst requests

Simples…

PSS – Person Search System

Crawling: Conclusions

•  Lots (too much) to potentially talk about
•  Most importantly:

–  Scalability is always a major problem
•  Constant (or at least not exponential) complexity of operations

–  Especially duplication checking

–  Politeness
•  It is easy to annoy a lot of people (we got 2 complaints, so far…)
•  Especially as small sites pay for bandwidth

–  Bottlenecks always shift, you cannot eliminate them!
–  Strange patterns occur even when running well

•  Ripple effect

PSS – Person Search System

Crawling: Conclusions

•  Lots (too much) to potentially talk about
•  Most importantly:

–  Scalability is always a major problem
•  Constant (or at least not exponential) complexity of operations

–  Especially duplication checking

–  Politeness
•  It is easy to annoy a lot of people (we got 2 complaints, so far…)
•  Especially as small sites pay for bandwidth

–  Bottlenecks always shift, you cannot eliminate them!
–  Strange patterns occur even when running well

•  Ripple effect

PSS – Person Search System

Crawling: Conclusions

•  Lots (too much) to potentially talk about
•  Most importantly:

–  Scalability is always a major problem
•  Constant (or at least not exponential) complexity of operations

–  Especially duplication checking

–  Politeness
•  It is easy to annoy a lot of people (we got 2 complaints, so far…)
•  Especially as small sites pay for bandwidth

–  Bottlenecks always shift, you cannot eliminate them!
–  Strange patterns occur even when running well

•  Ripple effect

PSS – Person Search System

Crawling: Conclusions

•  Lots (too much) to potentially talk about
•  Most importantly:

–  Scalability is always a major problem
•  Constant (or at least not exponential) complexity of operations

–  Especially duplication checking

–  Politeness
•  It is easy to annoy a lot of people (we got 2 complaints, so far…)
•  Especially as small sites pay for bandwidth

–  Bottlenecks always shift, you cannot eliminate them!
–  Strange patterns occur even when running well

•  Ripple effect

PSS – Person Search System

Indexing

•  Indexing is carried out as part of the crawling process
–  Once a page is downloaded it is scanned
–  Each word is identified (not using RegExs)

•  Locations of Pronouns (words starting with a capital letter) are recorded
•  Each page ends up with a list of Pronouns which Resolve to their

original position in the Page
–  HashMap<String,HashSet<Integer>>

–  The Index table is then updated
•  Each Pronoun has it’s own row
•  Each URL has a column
•  The value at the coordinates (row,column) represents a list of locations

stored as sequential 32-bit integers

•  For clustering later it would be useful to cache pages, unfortunately
this requires lots of disk space…

PSS – Person Search System

Information Extraction

•  Extracts person information (i.e., relation extraction)
–  Pages to extract from identified by index

•  Spot occurrences <first_name> <last_name>
–  Content Windows derived using name patterns
–  Use HMMs to extract information regarding a single person

•  Name
•  Email
•  Website
•  Location

PSS – Person Search System

Clustering

•  Goal =
–  Query index using:<first_name> <last_name>
–  Returns set of documents: contains different namesakes
–  Group documents into separate clusters, where

•  One cluster contains documents referring to one namesake
•  Tested 3 methods for clustering

–  DBScan (measures density outliers)
–  Xmeans (extension of k-means: estimates k)
–  Agglomerative Hierarchical Clustering (singleton cluster merging)

•  Feature vector composition
–  Bag-of-words model for each document (from extracted features)
–  Features weighted based on TF/IDF scores

•  Tuning: Web People Search Evaluation (WEPS) 07 training split
–  Choosing maximum params based on F0.5(purity,inverse_purity)

•  Testing: WEPS07 and WEPS09 test splits
–  Measured: purity, inverse purity, Bcubed Precision, Bcubed Recall, F0.2

(prec, rec), F0.5(prec, rec), F0.5(pur,inv_pur)

PSS – Person Search System

Clustering
Purity

Inverse
Purity B3 Precision B3 Recall F02 F05 F05(P,IP)

weps07 DBScan (m=1, e=0.9) 0.476 0.759 0.494 0.748 0.620 0.550 0.500

Xmeans 0.929 0.263 0.897 0.155 0.171 0.214 0.528

Agglomerative (t=0.1) 0.692 0.428 0.657 0.345 0.321 0.367 0.556

weps09 DBScan (m=1, e=0.9) 0.263 0.693 0.408 0.679 0.544 0.466 0.284

Xmeans 0.927 0.436 0.919 0.276 0.304 0.366 0.677

Agglomerative (t=0.1) 0.476 0.553 0.530 0.444 0.396 0.391 0.438

•  With respect to SoA systems using same datasets
–  WEPS07

•  Agglo ranks 12th out of 16 Entries for F0.5(P,IP)
•  Xmeans ranks 1st out of 16 Entries for Purity

–  WEPS09
•  Xmeans ranks 1st out of 16 Entries for Purity
•  Xmeans ranks 12th out of 22 Entries for F0.5(P,IP)

PSS – Person Search System

PSS – Person Search System

Conclusions

•  Crawling
–  Scalability: hard to scale linearly
–  Politeness: increased speed inhibits politeness

•  Information Extraction
–  Limited by supervised training
–  Semi-supervision could increase features collected

•  Clustering
–  Performance is too low

•  Xmeans: inverse purity is too low
–  Produces insufficient cluster numbers (low k)

•  Agglomerative: purity is too low
–  Produces too many clusters (high k)

PSS – Person Search System

Future Work

•  Information Extraction
–  Retrain HMMs using induced observation patterns

•  Boost coverage over URLs

•  Clustering
–  Increase features used:

•  Additional person attributes
–  From WEPS Attribute Extraction Challenge

•  Pronouns
–  2 phase clustering:

•  Apply Xmeans followed by Agglomerative
–  Split initial high purity clusters to boost recall

PSS – Person Search System

Questions?

