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ABSTRACT 
Current web 'standards' formalize formatting and provision of information on the Web, but 

little of this information can be put into context by a machine without heavy analysis. A 

proposed XHTML extension called RDFa allows the content creator to specify the type of data 

on a web page which implies or specifies the context and relationship of this data. This allows 

automated processes to potentially discern the meaning of the information. There are many 

search engines for several different types of media, but most commonly they allow the user 

to search content on the Web, return results based on a relevance match which is often done 

by the frequency in which the search term appears in the document. The aim of this project is 

to index pages which contain RDFa data for searching, tackling issues involved with and 

providing more research crawling and indexing large numbers of pages and enormous 

amounts of data.  
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GLOSSARY 

AJAX 

Asynchronous JavaScript and XML – a group of related web development 

technologies used in creating interactive client-side applications. 

CALL BACK 

A reference to a piece of executable code that is passed as an argument to other 

code. 

CHECKSUM 

A fixed size ‘signature’ computed for some data for detecting accidental errors 

potentially introduced during its transmission. 

CRAWLING 

 Crawling the Web is the process of automatically and methodically browsing the web. 

DNS 

 A hierarchical naming system for internet resources. 

ESCAPE CHARACTERS 

Escape characters identify the start of a character sequence which should be 

interpreted differently from if the same characters occurred without the escape 

character. 

FUSE (LINUX) 

A kernel module for Unix-like operating systems that lets users create file systems 

without editing kernel code.  

HTTP 

Hyper Text Transfer Protocol – the application layer protocol for interacting with web 

servers. 

 (FORWARD) INDEX 

 An index is an ordered list mapping an identifier to some data. 

INDEXING 

 Indexing is the process of parsing data and creating an index from it. 

THE INTERNET 

 The Internet is a global system of interconnected computers and networks. 

IP (INTERNET PROTOCOL) 

The Internet Protocol (IP) is a protocol used for communicating data across a packet-

switched internetwork using the Internet Protocol Suite, also referred to as TCP/IP. 

MUTEX 

A mutual exclusion system used to ensure exclusive access to a resource on a 

concurrent or multithreaded system. 



 xi 

 xi 

RDF 

The Resource Description Framework is used to model information used in web 

resources. 

RDFA 

The W3C Resource Description Framework – in – attributes recommendation adds 

RDF attribute extensions to XHTML web pages. 

REPOSITORY 

 In the context of this paper a repository is a data store for web pages or triples. 

REVERSE INDEX 

 A reverse index is a list mapping data tokens to the original set of data. 

REWRITE RULES 

Used in web servers to map virtual URLs to actual resources. 

SEGMENTATION FAULT 

Also known as an access violation, can occur when a program attempts to access a 

memory location that it is not allowed to. 

SESAME 

 A Java Servlet/Tomcat based Triple Store. 

TCP 

The Transmission Control Protocol (TCP) is one of the core protocols of the Internet 

Protocol Suite. 

TRIPLE 

In the context of RDF a triple is a collection of three pieces of data – a subject, a 

predicate and an object. 

TRIPLE STORE 

A purpose built database for storing and querying RDF data 

THE WEB 

 The Web is a system of interconnected hypertext documents on the Internet. 

USER AGENT 

 In the context of this report a User Agent is a string used to identify a HTTP client. 
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CHAPTER 1: INTRODUCTION 
The Web has grown exponentially since its conception and it is now extremely large, 

impossible to quantify accurately. Finding information on The Web without any assistance is 

near impossible unless you have prior knowledge of its location, and this has ensured that 

search engines will always be well used and make an enormous contribution to the 

usefulness of The Web. A search engine must first (and repeatedly) collect data for its index, 

as the index is searched when a search engine is asked to find information. 

This collection process has two parts, first The Web is crawled, and then the data retrieved by 

the Crawl is indexed. Crawling is a process where an application called a crawler repeatedly 

downloads a page, identifies all links on it, downloads those pages, identifies all their links, 

and repeatedly harvests pages until it has acquired every linked page it can find. These pages 

are all stored so that they can be indexed. 

The pages downloaded are then indexed, each page is parsed and the visible content is 

located. All individual words in the page are identified and counted so that a forward index 

can be created where each page has a list of words and counts. There is also a reverse index 

for each word, which is a list of all the pages where that word appears. Different search 

engines will vary their Crawling and Indexing procedures so that the resultant data is tailored 

to match the features of the search service provided. 

The majority of search engines create their index from visible page content and little more, 

however there are new standards emerging known as RDF and RDFa that allow the context of 

information on the Web to be specified. The aim of this project is to index pages that are 

annotated with RDFa data to potentially allow for a detailed search index and interface. 

Crawling for RDFa data will require crawling every page, but only storing some of the 

information on them, namely the ones containing RDFa mark-up. There are several key issues 

with crawling and indexing a large amount of data. This project will attempt to tackle these 

issues with practical scalable solutions. 

Furthermore there is not much published research on Spiders and Web Crawlers which 

tackles in depth the more specific issues such as identifying unique URLs and ordering a URL 

queue to diversify it as much as possible. Hopefully this paper will make a viable contribution 

to Spider research and provide a good starting point for others to build upon. 

The details are broken down in to several sections in this report. Chapter 2 reviews current 

practises and background material used in creating a spider. Chapter 3 outlines the 

requirements of this project. Chapter 4 maps out a plan for the design and architecture of the 

overall system. Chapter 5 discusses actual implementation of the system covering problems 

encountered. Chapter 6 details the results of various tests run when developing the system 

and results from running the crawler and chapter 7 concludes the main points in this report. 
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CHAPTER 2: LITERATURE REVIEW 
This literature survey examines the infrastructure and topology of the World Wide Web, 

drawing particular reference to finding, indexing and searching for information with and 

without contextual enhancements. 

2.1: THE STRUCTURE OF THE WORLD WIDE WEB 

The World Wide Web (the Web) is an enormous collection of interlinked documents which 

reside on servers connected to the Internet. There are several different services that allow 

the Web to exist on The Internet. 

2.1.1: THE INTERNET 

In the crudest sense, The Internet is a very big network of computers. In reality it is lots of 

networks linked together to make The Internet. The words “web” and “internet” are often 

mistakenly used in everyday language to refer to the “Web” but they are not the same thing. 

The Internet is a global network, whereas the Web is the collection of web pages that are 

accessible over the Internet from Web Servers. 

The Internet uses a numerical addressing system which allows computers to connect directly 

to each other. The system currently in use (called IPv4) uses addresses of the format 

        where a, b c or d are integers between 0 and 255 (with some restrictions), and is 

basically a 32 bit address.  This means the max number of available addresses is     

               without restrictions. In practice there are fewer due to reserved blocks and 

unusable broadcast addresses.  

The Internet has now become so big that about 10 years ago a specification for a new IP 

Protocol (IPv6) was proposed (Network Working Group, 1998). An IPv6 address is of the 

format                                         where each pair is a hexadecimal 

representation of an 8 bit number making the IPv6 a 128 bit address, giving an address space 

of                 – which should last much longer than IPv4. 

2.1.2: THE WEB 

The IP protocol is merely one of the technologies of the giant infrastructure that is the 

Internet and the Web.  The Web (viewing content, at least) relies on two main types of 

server, HTTP and DNS. DNS stands for Domain Name System and it is a mechanism for 

resolving domain names (used for memorability, structure and order) to IP addresses. For 

example, when a user tries to browse the page at www.google.com the web browser asks the 

ISP’s name servers to resolve www.google.com and it will look it up and return an IP so the 

computer can make a direct connection. DNS is a hierarchical system and one Name Server 

often requests information from another, (more) authoritative one to resolve a query, but 

the detail on how this is carried out is beyond the scope of this paper. 

Revisions and updates in the network technology behind the Internet and the Web could 

provide problems for web spiders and indexers if they are not able to keep up with these 

changes, and gracefully operate during transition periods. But these changes apply to all 

users and services that access the Internet, which is why transitions are often slow. 
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2.2: ACCESSING THE WEB 

2.2.1: ACCESSING PAGES 

Retrieving a web page from the Internet is a process that requires multiple steps. Here only 

application layer protocols and interactions will be considered: 

1. Parse the URL 

2. Resolve and IP Address for the domain 

3. Connect to the web server 

4. Send the Page Request 

5. Wait for/accept the Response 

UNIFORM RESOURCE LOCATORS 

Uniform Resource Locators (or URLs) are used to identify the location of a specific page on 

the internet. Web Page URLs are of the format: 

                                                                    

The http prefix, otherwise known as the protocol, indicates that the resource is to be 

retrieved from a web server (other examples are ftp).  The server element can be an IP 

address or a resolvable domain name. The :port section is optional, the http protocol implies 

a default port of 80 but it can be specified that the web server is running on a different port. 

A URL can omit the /folder/page section; if this is the case a trailing forward slash will be 

added as / is the location of the default page at the root of the site. The /folder/page section 

is the path to the page.  

The substring ?this=querystring&more=ok is the querystring, which allows parameters to be 

passed to the page. Anything before the ? (or #) is considered the page address, anything 

after is not. Querystrings are name and value pairs in the form name=value and several can 

be used separated by an ampersand symbol. The limit on the querystring size is the same as 

imposed by the URL length, less the rest of the URL. This URL length limit is not fixed; 

different browsers and webs servers have their own restrictions. 

Finally the section #fragment is the fragment. Traditionally it identifies a section of the page 

for the browser to ensure is visible. The sections are named and defined in anchor tags in the 

html and referenced by using the name as the fragment. More recently they have also been 

used in pages using AJAX to add a form of persistence using it to store a path or parameters 

so that if the page is refreshed the page’s customized content does not reset. Facebook and 

Google Mail are two big sites which use both AJAX and fragment parameters. 

A URL can only contain specific characters, any others must be escaped. The server (or 

domain) must contain only a-z, 0-9 and dashes some UTF-8 characters can be escaped for 

other languages; any capital letters can be used but will be reduced to lower case when 

normalized. Folder and page names can only contain valid file system name characters unless 

the server can translate them, slashes are used to denote file system hierarchy. Querystrings 

often need to contain data that is outside of the allowed characters range, in which case they 

are escaped using percent encoding (Berners-Lee, 2005). Fragments are not often sent to the 
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server, so they can contain characters that can occur in the page mark up. Unreserved 

characters consist of A-Z, a-z, 0-9,_, -, . and ~; domains, folders and querystrings can only 

contain these characters. There are a small set of reserved characters including % (used for 

percent encoding), ? used to denote the start of a querystring section, & to delimit 

querystrings and # to identify the fragment section.  

URL NORMALIZATION 

A URL for a specific page can take, in theory, an infinite number of forms. A resource called 

demo.htm in the folder test on the server at www.example.com could have the URL of 

http://www.example.com/test/demo.htm. However, the following URLs (including an infinite 

number of others) would also resolve to that resource: 

1. http://www.example.com/test/nothing/../demo.htm 

2. http://www.example.com/nothing/../test/demo.htm 

3. http://www.example.com/./test/demo. htm 

4. http://www.example.com/././test/demo. htm 

5. http://www.example.com/test/./demo. htm 

6. http://www.example.com/./test/./demo. htm 

On a page, a hyperlink may specify a URL relative to the page, or an absolute URL, which is 

mainly why “..” and “.” are used in URLs. The “..” notation specifies the parent folder, so 

example 1 goes to the parent of /test/nothing/ which is /test/ which is why 

/test/nothing/../demo.htm is the same as /test/demo.htm. The “.” denotes the current folder, 

for example, if a link was on /test/demo.htm and linked relatively to “.” then it would simply 

link to /test/, a link to ./another.htm would link to /test/another.htm. However, in this case 

the “.” prefix is unnecessary as linking to another.htm would give the same result. Hence “/./” 

is the same as “/” so /test/./demo.htm is identical to /test/demo.htm. 

In practise “.” does not come up much, but “..” does. This poses a problem for crawlers, as it 

is best practise to avoid crawling a page more than once in a certain window of time. If a 

crawler discovers several variations of a URL and cannot determine that they are all equal it 

could crawl the same page many times needlessly. The solution is to normalize (or 

canonicalize) the URL, which is the process of modifying the URL to standardize it in a 

consistent manner. 

Normalization is used by web crawlers and search engines to avoid crawling and indexing the 

same page more than desired, however browsers may also normalize URLs to determine if a 

link has been visited or cached (Wikipedia, 2010). Browsers may also normalize URLs so that 

when the resource is requested from the server it is not needlessly redirected to the 

expected (normalized) URL. This is because many clients will only accept a finite number of 

redirects to avoid getting stuck in a redirect loop, so if the server redirects the client it could 

count against the number of redirects carried out. 

There is a standard normalization procedure defined in (Berners-Lee, 2005) which is made up 

of many steps. In theory they are all optional, however most should be used for the best 

results. They are as follows: 
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 Convert the scheme (protocol) and host (server) to lowercase 

  HTTP://WWW.Example.Com/ becomes http://www.example.com/ 

 Add a trailing slash if there is no path specified to indicate the root directory. 

  http://www.example.com becomes http://www.example.com/ 

 Remove directory indexes 

  http://www.example.com/index.html  becomes http://www.example.com/ 

  However deciding what is and is not an index is potentially difficult as each 

server can have its own list of ‘default (or index) documents’. Even though 

index.html may be an index page on one server, it may not be on another, 

resulting in a document not found (404) error if the URL is requested after 

normalization. 

 Capitalize letters in escape sequences 

  http://www.example.com/%3a becomes http://www.example.com/%3A 

 Remove the fragment 

  http://www.site.it/page.htm#section  becomes http://www.site.it/page.htm 

 Remove the default port 

  http://www.example.com:80/ becomes http://www.example.com/ 

 Remove dot-segments (“.” and “..”) 

http://www.site.com/../1/../2/3 becomes http://www.site.com/2/3 

 Remove “www” as the first domain label 

  http://www.example.com becomes http://example.com or vice versa 

  This is only useful if example.com and www.example.com return the same 

content, which is often hard to test, for even if the home page does obey this 

rule, other pages may not. It can also be problematic as the same page 

requested at two slightly different times could return different content, for 

example if the page includes the date and time or generation time. 

 Sorting querystrings 

  http://www.site.com/page?name=test&id=10 becomes 

http://www.site.com/page?id=10&name=test 

  The order of querystrings usually does not matter to the server processing 

the request, so when a hyperlink is created the order naturally does not 

matter so ordering them consistently during normalization is suggested. 

 Removing arbitrary querystrings 

  http://www.site.com/page?name=test&this=pointless becomes 

  http://www.site.com/page?name=test 

  Most pages using querystrings only use a few select names, so unused ones 

could be removed. However a client is not likely to know in advance which 

are needed and which are not, so this is not common, but may be done 

server-side through rewrite rules. 

 Removing default querystring variables 
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  http://www.example.com/sort=asc becomes http://www.example.com/ 

  If asc is the default value for sort then the page will render the same whether 

it is there or not. However once again a client is not likely to know this. 

 Removing “?” if there is no querystring 

  http://www.example.com/? becomes http://www.example.com  

THE HYPERTEXT TRANSFER PROTOCOL 

Most systems that rely or utilise communications over a network follow a protocol. The 

Hypertext Transfer Protocol (HTTP) is an Application Layer protocol which is the primary 

mechanism used to retrieve web pages, amongst other things. HTTP uses a request-response 

principal which is common in client-server network computing. The Hypertext Transfer 

Protocol determines the format and parameters the client and server can use when forming 

and processing requests and responses  (Fielding et al., 1999) 

A HTTP REQUEST 

Resolve the IP Address for the Domain 
If the server value is an IP address then this step can be skipped, otherwise the computer 

performing the request must contact the local name server (which is usually specified by the 

IP configuration of that machine) and ask for the domain to be translated to an IP address. 

Connect to the Web Server 
The computer now needs to connect to the server using the IP address and port specified 

(default is 80 if no port is specified). The connection is done using the TCP protocol. Upon 

successful connection there is no ‘welcome message’ as with some protocols, the client is 

free to send the request. 

Send the Page Request 
The client now needs to format and send the page request. This tells the server the domain 

name requested, and the page. Optionally, other information can be sent like form variables, 

cookie settings or restrictions on content type or language. 

A basic request is formatted as follows (Network Working Group, 1999): 

GET /folder/page HTTP/1.1 

Host: www.domain.com 

 

This simple request merely asks for a page, specifying no restrictions and without any cookie 

data. Without cookie data advanced features such as sessions cannot be used. Cookies and 

other restrictions are conveyed and specified in the similar means to the ‘Host’ attribute, in 

the format: 

Property: value 

 

The first line of the query first states the method (or verb), in this (and many cases) ‘GET’ 

followed by the path to the document, relative to the server root, and finally the HTTP 

version expected of the format of the exchange. The server can reject unsupported protocol 

versions. The request is finished with a blank line, technically a ‘character return, line feed’ or 
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CRLF. Some methods allow or require data after the blank line. As a spider will upload no data 

this does not need to be considered. 

After a request the connection can remain open if requested by the client and if the server 

supports it. A property called ‘Connection’ with a value set to ‘close’ will cause the server to 

close the connection after a response. This is often used in simpler request mechanisms, 

especially if pages are not requested sequentially and repeatedly from the same site. 

Wait for/accept the Response 
The client must now wait for the response from the server. If the server is inundated with 

requests there could be a long delay, or possibly an indefinite delay if the request goes astray. 

This may cause a timeout to occur and pass an error message or page to the user. The 

following is a very basic request and response after a request for 

http://www.google.com/robots.txt (the response has been truncated from a longer list of 

robot control statements). 

Request: 

GET /robots.txt HTTP/1.1 

Host: www.google.com 

 

The request ends in a double CRLF – the blank line signifies the end of the request 

Response: 

HTTP/1.1 200 OK 

Content-Type: text/plain 

Last-Modified: Wed, 18 Nov 2009 01:25:08 GMT 

Set-Cookie: 

PREF=ID=7b3a862b4b1b0006:TM=1258926213:LM=1258926213:S=RrIw8wOmt0iMrP

bT; expires=Tue, 22-Nov-2011 21:43:33 GMT; path=/; domain=.google.com 

Date: Sun, 22 Nov 2009 21:43:33 GMT 

Server: gws 

Cache-Control: private, x-gzip-ok="" 

X-XSS-Protection: 0 

Expires: Sun, 22 Nov 2009 21:43:33 GMT 

Length: 1234 

 

User-agent: * 

Disallow: /search 

 

The response ends in a double CRLF. 

The content of the response starts with the line ‘User-agent: *’, and it always starts after the 

blank line which follows the header – regardless of the type of data requested. 

2.2.2: SIZE 

There are currently well over 1.25 trillion (1,250,000,000,000) unique linked URLs on the 

Internet (Google, 2008) (Majestic-12, 2009). There are bound to be more pages on the 

Internet as some will not be linked to others, making them hard to find, and others will be 
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behind password protected areas, or prohibited by spider politeness rules such as robots files 

(which are discussed later).  

The web contains a truly vast amount of data. For example, (Cafarella and Cutting, 2004) 

assumes that a single web page is on average 10 KB in size. Based on this assumption 1.25 

trillion pages would take up 11.3 PB if they were stored in an uncompressed format. That 

paper is 6 years old, with advances in network technology, the average internet connection is 

currently much faster and it is clear that web pages are more content rich now, with images 

and other included files such as JavaScript and Cascading Style Sheets (CSS), making the 

overall average size of web pages larger.  

The Google homepage, which is renowned and now patented (Lardinois, 2009) as a very 

simple user interface requires 50 KB of bandwidth, a Google search result is around 75 KB and 

many other reasonably simple pages require well over 100 KB. This could put the disk cost of 

storing the pages at 113 PB, but this is still a vast underestimate as it excludes the space 

needed for all the streaming video, image hosting, content distribution and all the other rich 

content providing sites. 

In 1998 Google had an index of 24 million pages (Brin and Page, 1998) and in the space of 10 

years it has risen to well over 1 trillion. Google stores copies of the pages and reverse indexes 

(discussed later) for all words in the page. Their 24 million page index of 1988, with a 

compressed repository of all pages downloaded was 108.7 GB, assuming the data is still 

stored in a similar format with the same level of compression, their new index of today’s web 

would be around 41,000 times larger, which would be 4.25 PB. This estimation does not 

compensate for the increase in internet connection speed and page size. Their paper 

acknowledges that as computing performance increases they could easily use heavier and 

more intensive compression to reduce their index without having to worry about the 

performance overhead. 

These statistics are based on research and are not definitively accurate but they are educated 

estimates. They are also used later and their use implies this warning. 
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FIGURE 1: A GRAPH OF THE EFFECTIVE COST PER GB OF HARD DRIVE STORAGE AGAINST TIME (MATTHER KOMOROWSKI, 

2009). PERMISSION AQUIRED. 

There are two main factors that have contributed to the exponential growth of the Web. 

Firstly, the number of internet users has grown by almost 5 times since 2000, and many of 

these users will be contributing to the Internet in one way or another; for example, by 

making websites, setting up businesses and participating in forums. The other factor is the 

cost of disk space. When Google released their first big index in 1998, disk space cost about 

$50 per GB, whereas today the rate is about $0.07 per GB (Figure 1) (Matthew Komorowski, 

2009). With disk space getting exponentially cheaper there is less pressure on service 

providers to clean up old content to save space; instead many sites now have archives of 

older versions of pages or documents. A prime example of archiving is archive.org (also 

known as The Wayback Machine)  who have been archiving copies of public web pages since 

1996, and they claim to have over 3 PB of storage for this task (Internet Archive, 2009), 

however they do only store html copies of pages, no other media such as images, video, style 

sheets etc. 

The size of the Web as a whole is a factor that must be taken into consideration when 

attempting to crawl all or part of it. If a front-end search style interface is being provided then 

storage of the data for processing and referencing would require serious consideration, but 

even if this is not the plan, downloading and parsing the data will still require lots of 

bandwidth, time, processing and (electrical) power. All of these issues will be addressed later 

on. 

The estimated number of internet users is just under 2 billion (Internet World Stats, 2009) 

and the majority of those users will be trying to find information in one way or another. If 

each user was assigned an equal portion of individual URLs they would have over 625 each, 

and manually searching those pages would still take about a day if the user spent a couple of 

minutes on each. Furthermore, if their search was completed, that small one two billionth of 

the Web may not have contained the information they were looking for, rendering their 
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effort useless. This consideration helps illustrate how useful search services like Google are, 

especially when they can produce results in well under one second. 

2.2.3: SEARCH ENGINES 

It is a fact that the Web is huge, and that no one user could easily find information on it 

unless they had prior knowledge as to its location. That is why search engines are essential to 

the everyday use of the Web and why almost half of the top 20 websites ranked by popularity 

are search engines (Alexa, 2009). Search engines provide a crucial gateway to the Internet, 

allowing users to enter a short query and frequently find the information for which they were 

looking.  

Search engines can only truly be considered useful if the user is able to find the information 

or site that they are looking for fairly quickly. Research from a survey (iProspect, 2006) 

carried out in 2006 states that the majority users (62%) of a search engine will only look at 

the first page of results (usually the first ten) results. The survey was also conducted in 2004 

and 2002 and found that as time went on, more people were only looking at the first page of 

results and less people (from 19% down to 10%) were prepared to go beyond the third page 

of results. This means that the algorithms used to sort the results must be very adept at 

ranking the entries in their indexes in terms of relevance to the user's query. This has always 

been a problem for the operators of search engines because for as long as search engines 

have been around. There have been people trying to mislead them and distort the results by 

using various tactics to promote their sites for specific queries to which they may not actually 

be related in order to increase traffic, sales or to capitalize from advertising. 

2.3: THE WEB, IN CONTEXT 

There is a lot of ambiguity in language, for example the word "close" can refer to both 

proximity (those cars are close to each other), or state (close and open, in reference to 

electronics for example gates and switches, or something as common as a door), but it is the 

context in which the word is used that often determines its meaning. As the Web must be 

indexed automatically due to its size, computers are left to analyse the content and though 

there is much research into the analysis and processing of text it is still far from perfect and 

can be a very resource intensive process. An extension to the XHTML markup language called 

RDFa has been developed to allow machines to easily 'read' web pages, giving them the 

ability to look at the data between HTML tags and determine the meaning of the tag’s 

content; for example, whether it refers to a person, or a place, or any number of other things 

(W3C, 2008). RDFa allows the representation of RDF data as XHTML attributes. 

2.3.1: SEARCHING CONTENT VS.  CONTEXT 

When currently searching the Web there is little context analysis. For example, some names 

are ambiguous in the sense that they are made up of words which have another meaning in 

language. With contextual information available a user could then search and specify in which 

context they were searching. For example they could specify that they are (or not) looking for 

a person. 

2.3.2: RDF AND RDFA 
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RDF (the Resource Description Framework) is a language for providing information about 

resources on the Web (W3C, 2004). The RDF specification is built on the XML syntax. The 

intention for RDF is that it can be used in situations where the information is to be processed 

by computers and not individuals, for example data mining, or comparisons. RDF is based on 

the idea that web resources are identified using URIs (uniform resource identifiers) and these 

URI’s can be described with properties and values. RDFa allows RDF data to be embedded 

into an XHTML page as tag attributes: 

<div class="right" about="http://www.ivan-herman.net/foaf#me" 

typeof="v:Person foaf:Person"> 

 

This code, taken from Ivan Herman’s page at W3C (http://www.w3.org/People/Ivan/) 

indicates that the div specified and all content in it is a type of “v:Person” and “foaf:Person” 

entry. The fact that they contain the word person does not mean that they are actually about 

a Person. Their definition is in the namespaces identified earlier in the page (shown below) 

which link to URLs and the content at these URLs helps define the relations. 

xmlns:foaf="http://xmlns.com/foaf/0.1/" 

xmlns:v="http://rdf.data-vocabulary.org/#" 

 

Identifying people’s details is just one of many uses of RDFa, and it is already an existing 

ontology but there are many including those for books, products and images. An Ontology is 

a description of entities and their relationships, which is designed to be read by computers 

and not humans. 

2.3.3: PARSING RDFA AND STORING RDF DATA 

A system has emerged for storing RDF called a Triple Store. It stores identities that are 

constructed from triplex collections of strings. The triplex collections represent a relationship 

between a subject, predicate and object (Jack Rusher, n.d.). There is sometimes a fourth 

element, the context – technically a system that can store these is called a Quad Store, 

though many support the fourth element they are still known as Triple Stores. Storing the 

data is the less technically challenging part; the feature of many RDF Triple Stores is that they 

allow for logical querying in a Prolog/SQL style syntax call SPARQL. SPARQL allows for logical 

relationships to be created as graphs. To be able to store RDFa in a Triple Store its containing 

page needs to be parsed and the RDFa converted to RDF.  

2.4: CRAWLING AND INDEXING 

There are numerous projects in place to index the Web for different purposes. A very 

common reason is to provide data for a search service, for example Google, Yahoo and Bing 

(formerly Live Search). But there are other reasons. As previously mentioned, Archive.org 

indexes data so that it can keep a historical record; and the company Majestic-12 provide 

linking relationship statistics to companies and individuals who carry out Search Engine 

Optimization services (used to ‘improve’ search engine rankings). 

‘Indexing’ the Web as a whole has two major parts, Crawling the Web to find and download 

all the pages and then indexing those pages by parsing them and creating a searchable index 
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structure. Crawling is essential to indexing the Web as without the data from the crawl there 

would be nothing to index. The procedure of crawling can be a very intricate and delicate one 

because if any one component of the crawler process does not perform as expected it could 

cause it to slow down and perform inefficiently or behave impolitely and be banned from 

many web servers.  

2.4.1: BASIC CRAWLER AND INDEXER 

The simplest logical process for crawling the Web is as follows, it assumes that we have a list 

of URLs to crawl and that it keeps track of the URLs that have already been called: 

1. Add a ‘seed URL’ (a URL to start with) to the crawl list 

2. Download the next entry on the crawl list if has not already been downloaded before 

3. Parse the HTML extracting URLs. 

4. Save the HTML for indexing 

5. Add those URLs to the crawl list 

6. While the crawl list is not empty go to step 2. 

This basic process has issues and limitations that are considered later on. 

This simplest logical process for indexing the crawled data is as follows, it assumes (crudely) 

that we have a big folder with all pages in them and that they are deleted after being indexed 

and that for each word we have a list of pages in which they occur: 

1. Load the next page in the folder 

2. Make a set (no duplicates) of all the words that occur in the page 

3. For each word in the set 

a. Add the URL of this page to the list for word 

4. While there are still pages in the folder go to step 1 

Once again, this basic process has issues and limitations which do not consider the advanced 

structure of web pages and this will also be addressed later on. 

2.4.2: POLITENESS 

Politeness is a term used to describe how a spider behaves when it crawls the Internet. It 

generally takes into account whether the spider obeys limitation rules of the site (or not) and 

how aggressive the spider is towards an individual web server – in other words, how often it 

tries and access pages from that site and considering that it could cause a Denial of Service 

error for other, real users. A polite spider will obey all limitation rules and will not query any 

individual site too frequently. 

(RE)CRAWLING 

Assuming a spider uses the basic crawling logic described in section 2.3.1, it instructs the 

spider to use the next URL off the list to crawl. If the crawler is set to start on the homepage 

of a fairly large site, there will probably be at least a handful of links on that site that point to 

other internal pages, and when those pages are followed there will likely be a few more links 

on each page which are unique and lead to other pages on the site. Before long the crawler 
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will spend most of its time on this one site until it has visited every URL, at which point it will 

then probably get hung up on another large site.  

Consideration must be taken when processing the ‘crawl list’ so that it is not done 

sequentially, unless the process of adding to this list is not sequential. Though this extra 

consideration will require processing time, and add general overhead – it is essential to 

prevent the IP(s) of the spider from being banned by vigilant webmasters who are annoyed 

by handful of impolite spiders preventing their real users from gaining access (Cody, 2001). 

If there is a need to maintain a reasonably up-to-date index then the rate at which the site is 

re-crawled must also be determined and set to a sensible frequency. For a small crawler 

project, the resources available for the system may force this to be several months or more, 

but large search engine providers can afford to re-crawl at least once a month, if not more 

frequently. The robots restrictions (discussed later) does allow a crawl and re-crawl delay to 

be specified, however it is not an official extension to the robots specification and for that 

reason many spiders ignore it (Wikipedia, 2009). 

ROBOTS 

There is a two part system in place used to explicitly inform spiders (otherwise known as 

Robots) of what they are not allowed to access and to crawl on a particular domain.  

One part of this system is known as the Robots Exclusion Standard. There is no official 

standard or RFC for the Robots Exclusion Standard specification; it was created by consensus 

in June 1994 (Pages, 1994). It consists of a text file that resides in the root of the website, 

called ‘robots.txt’. The address of the robots file for www.google.com would be 

http://www.google.com/robots.txt for example. 

Robots files can specify instructions for all robots and specific robots. An example would be 

as follows: 

#This is a valid comment 

User-agent: * #This line says these rules apply to all robots 

Disallow: /paths 

Disallow: /path/ 

 

User-agent: Googlebot 

Disallow: 

 

The first line is comment, denoted by the # prefix. The comment on the second line is also 

valid and does not affect the text preceding it. The first user agent specifies a wildcard; this 

means any spiders that are not otherwise explicitly addressed should use these rules, that 

means Googlebot will ignore this section as Googlebot has its own specification.  

Googlebot is allowed everywhere as the disallow statement is blank, in other words it is not 

disallowed anywhere. 

Any other search engine is not allowed to access any path prefixed by the disallow entries: 

 /path/file   is not allowed 



 Chapter 2: Literature Review 14 
 

 14 

 /paths/file  is not allowed 

 /pathscanbelong is not allowed 

 /pathtest  is allowed 

The other part of the system can be implemented in the head section of a web page in the 

form of Meta tags. It can tell the spider whether or not the links can be followed or indexed 

(Wikipedia, 2009). Common values can specify that the page is not indexed at all, the page is 

allowed to be indexed but no links are followed and that the page is not to be cached. Unlike 

robots.txt, some spiders do ignore Meta tags to preserve the integrity of their results. 

2.4.3: DATA STRUCTURES 

Google (Brin and Page, 1998) took much care, even for their first major index to use very 

carefully designed data structures to store information, they acknowledge that generally the 

performance of computers improves but that disk seek time is still around 10ms, and for that 

reason they optimize their structures to avoid disk seeks if possible. Testing whether a URL is 

new or not could be quite resource intensive, for example if a simple list was created of all 

URLs seen so far it would then have to be searched each time a new URL was found and as 

the list got bigger the search would get slower. For text processing and storage there are 

several common tree based data structures which could prove beneficial for a fast lookup, 

but if stored on disk they are expensive in terms of space as overhead is added in the form of 

pointers (Goodrich and Ramassia, 2004). 

Google (Brin and Page, 1998) uniquely checksum their URLs which shortens them and allows 

for a quicker comparison and binary search is used to link the checksum to an ID which can 

then be used to find details about the URL. Larger data structures which will not need rapidly 

searching or iterating are compressed to save on resources (disk space), which is a calculated 

plan as the cost of performance has been traded against disk space gain. 

2.4.4: BANDWIDTH 

Even if not all pages are to be indexed when crawling the Web, most must be downloaded so 

that the links on the pages can be followed as these or subsequent links may lead to a page 

that does need to be indexed. Based on the previous assumptions after examining reliable 

sources (Google, 2008) (Majestic-12, 2009) that there are at least 1.3 trillion pages on the 

Internet the following could be reasonably assumed. 

(Cafarella and Cutting, 2004) Suggests that on average a web page would be about 10 KB in 

size, as noted earlier, this estimate is several years out of date, but it is sufficient for this 

example. The request and data header add about 0.5 KB (based on the earlier HTTP example 

in section 2.1.4) so it will be assumed (very conservatively) that the total bandwidth to 

download a page including headers and overhead is 10.5 KB (which is 86 Kbits). So the 

bandwidth for 1.3 trillion pages would be: 

 13,977,600,000,000,000 Bytes or 

 111,820,800,000,000,000 Bits or 

 12.4 PBytes or 

 111.82 PBits 
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Currently, one of the fastest home internet connections is about 50 Mbit/sec (Broadband.org, 

2009). If it is assumed a connection of this speed is used and that it will always access pages 

at full speed with no delays, and disregarding the fact that home internet connections have a 

slower upload rate than download rate, the following calculation holds: 

                       (                )             (                )

               (               ) 

2,236,416,000 seconds is 37,273,600 minutes, or 621,226 hours, or 25,884 days, 70 years.  

This figure in reality would be greater because removing the assumptions, and introducing 

reality would add many time delays. Another factor ignored is the bandwidth taken to find 

out if a URL contains an image, binary file or other non-html content, as they would need to 

be ignored too. Only the header of the response needs be retrieved but this is another 0.5KB 

per request which will add more delays.  

Corporate broadband services run much faster, so a faster connection would speed up the 

process as more concurrent requests could be made to different sites simultaneously, but 

network and server delays would not be improved. 

2.4.5: STORAGE 

Crawling and Indexing the entire Web requires lots of disk space (as well as bandwidth) and 

there are several considerations to be addressed. The conservative estimate made in section 

2.1.1 suggested that 113PB may be required to store all pages for indexing. Other lists and 

indexes involved may a large volume of space (uncompressed). A good compression scheme 

could reduce it by up to 75% (Brin and Page, 1998) cutting the space required down to 

28.25PB. No physical disk is currently that big, so one way or another, the data would need to 

be split up. It is possible that some indexes may be bigger than one physical disk too.  

The data collected, as well as being vast, is quite expensive in terms of resources required to 

gather it, as it takes a lot of CPU time and bandwidth, so it could be very detrimental if all or 

part of it were lost. Unfortunately backing up data requires up to double the disk space used 

to make one whole backup, or less if the overhead of checksums are introduced (AC & NC, 

2009).  

The Google File System (Ghemawat, Gobioff and Leung, 2003) tackles both these issues 

simultaneously whilst also trying to maximise performance and concurrent use. There are 

several assumptions made based on how they store data, but it works as follows: 

In each cluster there is one master server and multiple data (chunk) servers. The data, saved 

as files are divided in to 64Mb chunks. Each chunk has a replication count (with a default of 3) 

and these chunks are stored on at least that number of chunk servers. The master server 

keeps track of where files exist, and manages locks and access. The concept is highly detailed 

and the intricacies are more than needs to be covered here. 

2.4.6: OVERALL PERFORMANCE 

Google (Brin and Page, 1998) acknowledged that hardware performance is a very serious 

consideration when processing large amounts of data, and that slightly optimizing one area of 
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code can rapidly shift a bottleneck from where it was to somewhere else (usually the next 

slowest part of the system). For the initial big crawl that Google carried out, of 24 million 

pages, they ensured that the indexer was optimised just enough to run faster than the 

crawler so that it would not be the bottle neck and the crawler was the limiting factor on 

performance at the time. It was also observed that disk access is a significant area of their 

systems that hindered performance, with disk seeks taking around 10ms the data structures 

and systems were designed to minimise the number of disk seeks, either keeping indexes in 

memory or optimizing data structures so that sequential access was possible in most cases. 

There will always be bottlenecks in large scale web spiders and indexers, and they are likely 

to occur where less has been invested in a certain resource. Some can be dealt with or 

tolerated, others may cause the system to stop working. For example, a lack of available disk 

space will stop a spider but bandwidth limitations on an internet connection may cause the 

spider to run slower, but will not stop it entirely. The ideal situation would be where the Web 

could be crawled and indexed so quickly due to an abundance of resources that the system 

could either wait until, or finish, just as the next crawl was due. If the system finishes quickly 

it will still have bottlenecks, they will just be negligible as they do not affect the planned use 

of the system. 

2.5: DISTRIBUTED COMPUTING 

Several serious attempts to crawl the Web (many successful) have used distributed 

computing to achieve this (Majestic-12, 2009) (Brin and Page, 1998) (Cafarella and Cutting, 

2004). Due to the vast amount of data collected from a crawl distributed storage is required. 

Network Attached Storage is still distributed as it spans the data (distributes) over many 

drives. Google distribute the data and workload over many computers. Exact figures are not 

known, as Google keep their current workings very secret,  but it is clear how much data they 

must store (as a minimum) and it can be reasonably be assumed that there are lots (possible 

800,000 plus (Dean, 2008)). 

Another very good reason for using distributed computing (with cheap hardware) is reliability 

(Dean, 2008). Jeff Dean of Google outlined the failure rates and servers affected that occur 

within a year of installing 1000 servers: 

 Power distribution failures (500-1000 servers) 

 20 rack failures (40-80 servers) 

 12 router reloads (takes down network services) 

 3 router failures (networks become disconnected instantly) 

 1000 individual machine failures 

 1000’s hard drive failures 

High cost machines could easily have similar specifications however have a greater cost due 

to more reliable hardware. Cheaper machines mean permanent failures cost less to rectify, 

and unlike supercomputers or mainframes, they can be slowly built up. Distributed 

computing allows for greater redundancy if the infrastructure design is well planned as key 

points of failure can be avoided by spreading services on systems or geographically, unlike 

bigger non-distributed systems (such as mainframes). 
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CHAPTER 3: REQUIREMENTS AND ANALYSIS 

3.1: OVERALL STRUCTURE 

As with any complicated and/or large scale project or challenge there are many potential 

solutions and at first it may be hard to determine the long term implications or differences. 

This means that some preliminary design choices may become crucial to the project’s success 

later on. This project has three main areas of focus, a web crawler, an indexer and scalability 

as a whole. These core items can be subdivided into many smaller areas as detailed in the 

following sections.  

3.1.1: CRAWLING 

Crawling can be an ambiguous term as it is often used to refer to the whole process of 

crawling, indexing, and sorting web pages, or more specifically it is used in reference to 

downloading pages from a queue. In this paper, when referring to the system as a whole the 

aim is to use the term Spider.  “A *Web+ crawler is a computer program that browses the 

World Wide Web in a methodical, automated manner.” (Wikipedia, 2010) - Wikipedia’s 

definition is unclear as browsing involves some form of parsing, sometimes done in the 

indexer. The Crawler, as talked about here, is a system which goes from page to page 

discovering links and finding data to index; it encompasses subsystems like the URL queue 

and duplicate URL checking. 

3.1.2: INDEXING 

Data from pages retrieved as part of the crawling process will need to have information 

deemed useful extracted and stored. This step can be broken down in to two parts, parsing 

the page to locate and extract the data, and then storing the useful information extracted. 

Parsing is a task specific activity, for example parsing for a search engine would require 

forward and reverse indexes to be generated. This also applies to storage, search engines will 

often store the whole page so that search results can reference points in the page where the 

search terms occur. The data being indexed can define when indexing occurs in the overall 

process, this is discussed later. 

3.1.3: SCALABILITY AND SPEED 

There are many delays that the crawler may encounter and resource limits could also impose 

limits on the crawler such as limited disk space or bandwidth. As any one server has limited 

resources, even if it is fully upgraded, a Spider needs to be scalable so that it can run across a 

number of servers allowing it to go about its task as quickly and efficiently as possible. 

3.2: CRAWLING 

3.2.1: TRACKING LISTS 

Several aspects of a Crawler need to keep track of large lists of data, most commonly URLs. 

The various aspects of a crawler require the use of lists for different purposes and therefore 

the lists in each area require specific features or enhancements. The term list is used here as 

an umbrella term, the ideal solution may not eventually be a list; it may be a tree or some 

other data structure.  
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The implementation of these lists will need to be done carefully with respect to their required 

features, with special attention given to performance as a poorly implement list may prove to 

be a bottleneck. 

3.2.2: QUEUE URLS TO CRAWL 

URLs that are discovered while crawling a page also eventually need to be crawled. A list of 

these URLs would need to be maintained; ideally removing entries once they have been 

crawled. As discussed in the next section, organization of the list can be very important for 

preserving crawler politeness. 

3.2.3: BEING POLITE 

A crawler must avoid crawling a particular site (or server) too often (over-crawling) as well as 

not trying to access restricted areas. Failure to be polite is likely to cause a crawler to be 

banned from accessing sites - if the crawler does not obey rules correctly then it is probable 

that the IP(s) of the crawler will be blocked. 

When a page is crawled, unless it is a link directory it is quite likely that most links on that 

page will link back to other pages on the same domain. This means that as a list of URLs to 

crawl is generated it will likely be dominated by this domain. This is because while processing 

the list it will more often crawl pages from that domain. Processing the list of URLs to-crawl 

(known as the crawl queue) sequentially often means that over-crawling will occur, one 

domain at a time. 

The Crawler’s architecture will essentially determine where it deals with over-crawling a site; 

however the method used can be implemented wherever this is. When the decision is made 

as to which URL to crawl next, checks need to be made to ensure that this URL has not been 

crawled previously, or recently. 

3.2.4: DOWNLOADING A PAGE 

A crawler needs to download web pages (which are technically files), it is realistically the only 

way to find more links on the Web and continue its task. The basic procedure is outlined in 

chapter 2, using the HTTP request-response system, but there is more to be considered. The 

method used to download files would need specific features: 

 It almost goes without saying that it should fully support the HTTP 1.1 protocol. Since 

its introduction in 1996 it was the majority protocol in use within 6 months and it is 

almost certainly standard today (Wikipedia, 2010). 

 It must be capable of timing out. A crawler cannot afford to wait too long for a 

response; for example if a server is heavily overloaded it may start sending a 

response but not complete it, or perhaps not even respond at all. In this case the 

crawler should move on after a specified delay and ideally queue the URL to be tried 

again at a later time.  

 For use in a crawler it is likely to be used in several concurrent threads within an 

application, therefore which ever method is used needs to be able to run 

simultaneously on several threads without any cross-thread interference. 

3.2.5: EXTRACTING LINKS 
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So that the crawler can explore further it must be able to find links on the pages it downloads 

and then crawl them. HTML pages are usually represented as long strings of text and they 

contain hierarchical mark-up tags which can have attributes, values and inner content. The 

hierarchy allows the page and elements in it to be represented as a hierarchical collection of 

data. These representations allow for various methods of finding links on pages. A suitably 

fast and flexible method must be used to ensure the maximum number of valid links can be 

discovered. 

3.2.6: CHECK FOR DUPLICATES 

At some stage the Crawler needs to determine whether a URL has already been crawled, 

either as they are discovered or as they are taken from the crawl queue. This is partly 

associated with the politeness of the crawler as it does prevent over-crawling a page or 

domain, but it also boosts efficiency. It is not feasible to crawl duplicates as they come up, as 

pages with many links to them may clog up the crawl queue meaning other pages never get 

crawled.  

3.2.7: QUEUE FOR INDEXING 

Depending on how indexing is handled, more specifically if it is done separately from the 

Crawler; then the pages discovered and downloaded need to be queued and stored to be 

indexed. Systems like Google use the crawler to download the page and then store it to be 

indexed (Brin and Page, 1998). Separate indexer processes work though the store counting 

terms to create inverted and forward indexes as well as discovering links which are sent to 

the URL queue that feeds the Crawlers. Intermediate page storage may only be needed if the 

Indexer and Crawler work at different rates, which is probably quite likely as synchronizing 

them would mean one is just wasting time sleeping. The Crawler may be forced to wait if the 

Indexer is slower and the intermediate storage becomes full. 

3.2.8: DECIDING WHEN TO STOP 

Though it is theoretically possible for a crawler to continue crawling until every linked page it 

can discover has been visited; due to limitations such as resources or time it could be more 

practical to impose some sort of limit. There are various ways such a limit could be imposed. 

If any limit is applied there may be a need to analyse content during Indexing and prioritize 

certain URLs if it is thought they may be more relevant or useful. 

3.3: INDEXING RDFA 

Indexing in a Spider is completely task specific; in this case the indexer needs to focus on 

parsing RDFa. As discussed previously and later, the ideal way to store RDFa is to convert it to 

RDF so this is what the indexer will need to do.  

3.4: STORING RDF AND RDFA CONTENT – TRIPLE STORE 

The RDF extracted from web pages that have been crawled needs to be stored; it would be 

ideal to store it in a manner that allows it to be easily searchable. A database system would 

easily allow vast amounts of text to be stored and indexed so that it easily searchable. (Note: 

database indexes and indexing is not the same as Spider indexing). However a system that 

can be based on database engines has been developed called a Triple Store.  
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Triple Stores are aimed specifically at storing RDF triples; they also index the triples so that 

the triples are searchable using a specific query language called SPARQL.  There are a myriad 

of Triple Stores available in a range of languages and they all scale differently, some to 

millions of triples, and others to billions. Unfortunately the more powerful Triple Stores 

require vast resources such as 16 GB of memory per storage node. A suitable Triple Store will 

need to be chosen for storing RDFa. 

3.4.1: DATA INPUT, OUTPUT AND QUERIES 

The means of adding and extracting data is very much dependent on the method of storage 

used, however the most suitable methods (being Triple Stores and Database Engines) often 

offer similar mechanisms. A web interface is a common way to control data; and most Triple 

Stores and database engines have one. Data can be uploaded though the HTTP POST 

mechanism, and retrieved with HTTP GET requests (which is the standard request used to 

access a page). The data retrieved can be restricted using specific queries. Alternatively some 

Triple Stores and most database engines offer client libraries for most common languages 

which sometimes offer more control than a web interface, and more direct interaction with 

the server. The crawler will somehow need to interact with the Triple Store to insert data. 

The ability to query the Triple Store will be a non-essential and low priority requirement. 

3.5: SCALABILITY 

Crawlers can be difficult to create and run as there are tasks they must perform which rely on 

external systems which are entirely out of the control of those running the crawler. There are 

also areas of the system which could prove to be very resource intensive; these factors must 

be accounted for and coped with as much as possible. 

3.5.1: HARDWARE 

Crawling and Indexing can be very resource intensive; lists needs to be managed, reshuffled 

regularly and lots of data needs to be stored. Using just one mediocre machine may prove to 

be very slow. Resources needed by a Spider are hard disk space, internet bandwidth, CPU 

time and memory. The cost of most of these resources scale exponentially with size, which 

means it might be more cost effective to distribute load among many average machines 

rather than few very powerful ones. Having many machines also improves redundancy 

because if one machine fails it proportionally makes up less of the cluster and unless it 

provides a key role this should have less of an impact. 

3.5.2: STORING DATA 

A Spider will potentially acquire and generate a lot of data, some of which will be temporary 

such as queues and some will be permanent, like the data in the Triple Store. All of this data 

needs to be stored in such a way that is easily accessible, for example it all appears on the 

same logical device; it also needs to be in some way protected against failure. If a disk fails 

which contains a section of the data it may well render the whole set of data useless which 

would mean starting the crawl again! 

The current limit for storing data in one physical device (such as a disk) is around 2 Tb which 

implies that for more than 2Tb to appear as a logical device (i.e. a mount point in Linux), a 

mechanism to span the data across several devices would definitely need to be used. 
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3.5.3: SPEED 

As part of the crawler, pages need to be downloaded from external servers and this process 

may suffer delays due to many factors. The first step is the DNS lookup. This sets a chain of 

requests going between the hierarchy of DNS servers, and some of the servers may be too 

busy or unavailable to answer a request, meaning it could be delayed for some time or 

eventually timeout altogether. 

If the DNS lookup is successful the crawler can then proceed to connect to the server and 

download the page. The connection process is also susceptible to delays which can be caused 

by network issues or server load, or just by the server not being available at all. Once a 

connection is made the server can also delay the response if it is overwhelmed. 

Regardless of the cause of any delays, they must still be tolerated in the hope that the page is 

successfully retrieved. So that this does not become a bottleneck one solution would be to 

make several requests simultaneously; it means that while potentially waiting for some page 

requests others will finish and new ones will start, so the crawler is always busy doing 

something.  

The ideal situation would be where the crawler is going so fast that its limiting factors are 

environmental conditions that are unchangeable. For example, if the crawler is downloading 

pages so fast that the bandwidth limit is reached, or it runs out of disk space when absolutely 

no more is available. 

3.6: EVALUATION 

The final system and its components will need to be evaluated to determine whether it has 

become a suitable solution for the project. It will be compared against the original 

requirements set out here, where an analysis will be made comparing the similarities and 

differences, why they exist and how they have or have not benefitted the project. A site or 

sites with a known number of triples will also be crawled to ascertain whether the Crawler is 

capable of finding RDFa data and this will show the crawlers accuracy. Other scalability and 

performance tests on components of the system and the system as a whole will be carried 

out during the development and evaluation. 
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CHAPTER 4: DESIGN 

4.1: OVERVIEW 
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FIGURE 2: AN OVERVIEW OF THE SPIDERS ARCHITECHTURE AND INTERACTIONS 

Figure 2 shows an overall structure for the Spider as a whole. The URL Queue, Robots Cache, 

URL Cache and the Triple Store are all separate applications (or services). All applications will 

run as single instances except the crawler itself which will run on several servers. It is likely a 

few other service applications will be created for tracking running applications and for logging 

purposes. 

4.1.1: UNITY: CRAWLING AND INDEXING TOGETHER 

In a system which both crawls and indexes data, there are two main ways to approach the 

need for both processes. The first approach is to use a crawler to take URLs from a queue, 

download the pages and then send them to a store. A separate process, the indexer, retrieves 

them from the store. Once the pages are retrieved they are parsed to extract links and other 

desired data; the links are then sent to the queue and any other data is stored as appropriate 

for the specific system. 

Alternatively indexing could be done as part of the crawling process. If each document needs 

to be stored with the indexed data, for example for referencing, then the first method is likely 

to be best. However, if only the indexed data needs to be stored then indexing after crawling 

in the same process can minimize network bandwidth and potentially improve performance. 

As the data of a page does not need to be sent to another service, server or process it can be 

processed on the same machine in the same process simply passing the memory reference to 

the parser. This also means no intermediate storage needs to be used. As it is not necessary 

to index separately for this project it will be done as part of the crawling process. 
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4.2: LANGUAGE 

There are many programming languages around today all of which have pros, cons and 

specific abilities. The choice of language could prove to be a key factor but on the other hand 

it may well cause restrictions too. The available languages could be restricted by the systems 

the code is going to be run on, for example Microsoft’s .NET languages do not run natively on 

Linux (some, mainly C# can be run now under Mono (Mono Project, 2010), however some 

features of the .NET framework are not implemented). Languages like Java and those of the 

.NET framework have vast component libraries and memory management which can mean 

when used, programming tasks are faster to complete and easier to debug, however they can 

suffer in raw performance because of the safety checks and garbage collection that goes on 

while the program is running as well as lacking explicit use of pointers.  

 On the other hand, languages like C and C++ can be harder to use, and require much custom 

code or 3rd party libraries to perform ‘simple’ tasks that can otherwise be done with the built 

in libraries included in Java and .NET. But beneficially they also allow complete control over 

the allocation of resources. Like other decisions to be made, there is no correct choice out of 

the many potential solutions, each language will have benefits and cause issues. 

The language used to implement the bulk of the system will be C++. The motivation for this 

choice is primarily due to two implicit requirements; the first is that the system will be 

running on Linux, mainly to avoid licensing costs, which essentially discounts any Microsoft 

languages such as ones using the .NET Framework like C#. However, Linux file systems 

generally do not suffer from fragmentation on the same level that Windows ones do which is 

a performance benefit. Secondly, there is substantial emphasis on performance, with the web 

being so vast it is beneficial for the crawler to run as quickly as possible. There are many data 

structures which along with being carefully designed, need to be accessed quickly, C++ allows 

much tighter and yet more flexible control over low level resources such as memory which 

may aid performance.  

4.3: DATA STORAGE 

There is potentially the need to store a vast amount of data, possibly more than can fit on 

one physical disk. There are four common ways of storing data across the boundaries of disks 

and partitions; in this section they are given a critical review. 

4.3.1: RAID 

A “Redundant Array of Inexpensive (or Independent) Disks” (RAID) is a very common storage 

solution, as the name suggests several cheap disks can be used to create a larger array which 

appears to the host system as one drive. Contrary to the name’s suggestion, RAID arrays are 

not always redundant. There are several levels of RAID often identified using a numbering 

system. The most common RAID levels are detailed in Table 1. 
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Raid 
Level 

Minimum 
Disks 

Space 
Available 
 (of n disks) 

Description 

0 2 n Data is ‘striped’ across the disks in the array. Access is fast 
as sequential stripes are stored on separate disks. There is 
no parity or mirroring and hence no redundancy 

1 2 n / 2 Data is mirrored between pairs of disks, for example with 4 
disks (1-4) 1 may be mirrored to 2 and 3 mirrored to 4. One 
of each pair can fail without affecting the array. 

5 3 n – 1 Data is striped with distributed parity; this means that if 
one drive fails access can still be maintained as reads can 
be calculated from the distributed parity. With one failure 
the data is at risk as a second failure will render the array 
useless. 

6 4 n – 2 As with RAID 5 the data is striped but with dual distributed 
parity. Up to two drives can fail while still allowing access. 
This means that if one drive fails the array is still redundant 
which is useful as larger drives take longer to re-sync with 
existing data, so while the failed drive is being replaced 
and re-synced the original data is still protected. 

TABLE 1: RAID LEVEL COMPARSIONS 

Traditionally RAID systems run locally, that is on one machine and a limiting factor is often 

the number of drives you can connect to a machine or RAID Controller. It also means that the 

machine itself could be a bottleneck to accessing the data. The SATA II Bus has a data rate of 

3 Gbit/s but the PCI bus has, at best a throughput of about 4 Gbit/s (on 64 bit systems) so if 

the drives are connected to a SATA-PCI host adapter then the full throughput of all four 

drives cannot be utilized simultaneously. RAID, when striping, generally uses all drives 

simultaneously, so the concept can be fundamentally flawed in terms of performance. 

The redundancy benefits of RAID are often oversold. It should not be overlooked that RAID 

operates at a low level; the whole array appears to the operating system as a disk which 

means the raw data is protected. The downside is that if the system performs an operation 

that corrupts a key area of the file system, for example the File Table these data changes are 

sent to the storage device (RAID) and then copied to the disks (possibly with parities being 

calculated). In this situation the data has become corrupted but the RAID system functioned 

perfectly. RAID should not be used to replace conventional backups; it provides reasonable 

real-time protection against failures but not system or file system errors. 

4.3.2: BASIC NETWORK ATTACHED STORAGE 

To take RAID access a step further is to use it as Network Attached Storage (NAS) whereby 

the array of disks is accessible as a mounted shared device. This may seem practical in the 

sense that many machines can access it simultaneously, however most NAS devices are just 

computers running basic Linux with hard disks and a network card and they are often no 

better than running RAID from a server together with a file server. A ‘normal’ server would 

actually give an administrator more control and flexibility.  

4.3.3: HIGH PERFORMANCE NETWORK ATTACHED STORAGE 
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There is a hybrid model above RAID and basic NAS (+RAID) which is commonly used at an 

enterprise level where high performance and/or high availability is needed; it is also generally 

known as NAS. It combines the benefits of RAID while attempting to remove performance 

bottlenecks of certain host technologies (such as PCI) and in turn, as a necessary implication 

improve network access performance. A dedicated hardware system (disk array host) 

provides RAID services with an array of hard drives directly connected to it; the hardware is 

designed to operate each disk at full speed.  This device can only be connected to by one 

machine, but at a very fast rate, often by fibre-channel or Infiniband which can offer speeds 

of up to 96 Gbit/sec (more commonly 8 Gbit/sec), possibly well above the speed at which the 

RAID array can operate.  

So that many clients can access high speed disk arrays they are often connected to a server 

running a file server. Network speeds at best are currently about 10Gbit/sec but more 

commonly 1 Gbit/sec, which in high performance environments would appear to be a 

bottleneck. The solution is to have several high speed network cards in a machine working 

together to serve clients on the network; this is known as link aggregation. It does require the 

server to have very fast powerful processors, fast RAM and a fast BUS. Although this system 

can perform very well, all the requirements to achieve a high data throughput make this 

solution very expensive. 

4.3.4: DISTRIBUTED FILE SYSTEMS 

Distributed File Systems allow many servers to store data but to appear to clients as one disk, 

folder or mount point. Unlike NAS RAID systems, access to the data is not reliant on the 

reliability of one single server or disk array; furthermore they allow for more cost effective 

scalability. As high performance NAS systems require disk array hosts and a server, once a 

disk array host is filled to add just one more disk would require another disk array host, and 

disk array hosts can cost as much as a decent server. Distributed File Systems can store data 

on many or few storage nodes (servers with hard drives); each node can have any number of 

disks connected to it which means to increase capacity either a single disk could be added to 

an existing node, or to a new node.  

In a way, Distributed File Systems can offer a form of RAID 0 and RAID 1 where data stripes 

(often called chunks in Distributed File Systems) are stored on different disks (and servers) 

and these stripes are also mirrored on to other servers. The striping allows for high 

performance; so that many clients can access the same chunk simultaneously on different 

nodes which reduces the chances of overloading a specific node. This effectively acts like link 

aggregation. 

Some Distributed File Systems employ load balancing and fault tolerance. If a file or chunk is 

being accessed heavily it will be replicated on to more nodes to spread out the load. To deal 

with fault tolerance chunks or files often have a replication count or goal, and if a node goes 

down the files or chunks are replicated to other servers to maintain the goal. Network switch 

failures can be compensated for by using Link Aggregation though different switches. 

Google’s GFS is an example of a distributed file system where the data is split into chunks and 

distributed many times over many servers offering high availability and fault tolerance. Like 
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several other Distributed File Systems, the data storage nodes can consist of commodity 

hardware. GFS does however require a master server to manage access, file locks and hold 

metadata such as the file system hierarchy and map of chunks on the storage nodes. This 

master server usually requires slightly better hardware – often more RAM so that the 

metadata does not need to be stored on disk to improve performance. 

4.3.5: CONCLUSION 

With RAID and NAS data storage solutions often being expensive a distributed file system will 

be used to store data on the assumption that the capacity of the disk(s) in one server will not 

be enough to store information gathered in a large crawl. There are many distributed file 

system solutions available for at no extra cost for Linux. During the Implementation the most 

promising of these will be tested for suitability and one will be chosen and configured on the 

cluster. 

4.4: SCALABILITY 

So that the Spider can run as quickly as possible it will need to be scalable so that it can be 

run on many servers simultaneously. This requires separate applications that can 

communicate with each other as well as common practices like multithreading and 

asynchronous input and output. 

4.4.1: THREADING, SYNCHRONICITY AND ASYNCHRONOUS IO 

There are often periods of waiting which a crawler must endure, but so that this doesn’t 

waste time it should also be crawling other pages simultaneously. There are three ways to do 

this; the first and crudest is to run many processes each crawling as a single thread. This may 

consume resources unnecessarily as many processes could duplicate identical structures in 

memory. A way to improve resource efficiency is to use one process and either 

multithreading or use asynchronous IO. With threading, in theory each thread can request 

pages from servers; if one thread is forced to wait the others can still continue without being 

delayed. Some synchronization may be required to ensure all resources used are thread-safe. 

With asynchronous IO, waiting for IO results will not block code execution, so several 

requests can be made and slow requests just continue to run in the background. However, 

unlike threading, if several requests come back at once they will then form a queue and be 

processed synchronously. A hybrid method using both ASIO and threading would be most 

beneficial. 

4.4.2: COMMUNICATION BETWEEN APPLICATIONS 

The Crawler will need to talk to the other services which are often going to be running on a 

separate server to the Crawler process itself. The only realistic way to do this is over a 

network. There are two main protocols used for communicating on an IP network: UDP and 

TCP. 

The UDP (or User Datagram Protocol) uses stateless queries to provide a mechanism for 

answering large numbers of small queries from clients (one of the most common uses of UDP 

on the Internet is in DNS services). UDP is considered unreliable as the protocol itself does 
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not support message acknowledgement and therefore it cannot be easily known if the 

message has reached the recipient. 

The TCP (or Transmission Control Protocol) is almost the complete opposite to UDP. It uses 

state based connections and a handshaking procedure to open a connection. Packets that are 

sent, are verified, check summed and ordered by the recipient so that any missed packets can 

be re-sent. TCP is considered reliable and the protocol’s requirements ensure that the 

recipient has accepted the connection and is able to receive data, as well as ensuring 

messages have been received successfully. 

Communication will be done using the TCP/IP network protocol as its protocol definition and 

state based connections provide a reliable communication system. This will require two main 

libraries to be created so that they can be integrated easily in to several services, a TCP Server 

and a TCP Client. The interactions between server and client will be simple request/response 

transactions, where every request expects a response. 

Using a request/response model makes the creation of the TCP Server and Client easier, 

however complexity is not a significant factor as most interactions require a response, which 

will be described later. The TCP Client will have a method called write which will take a 

request string, send it to the server, wait for a response then return that as a string. The 

constructor will take connection parameters such as a host and a port, and it will 

automatically open the connection. The destructor will close the connection and clean up. 

The TCP Server will listen on a specified port for TCP connections. When a connection request 

comes in it will be accepted and an asynchronous loop will begin. The server will read 

asynchronously until a (Windows) new line, represented as “\r\n” or Character Return Line 

Feed (CRLF) is received. As the read is asynchronous it should not block any new or existing 

connections. When a new line is received any text preceding it is considered to be the 

request string. That request is processed on a new thread so that any other asynchronous 

reads that come through are not blocked by the current one being processed. As with 

asynchronous IO the process of waiting is non-blocking but otherwise it still only runs on one 

thread. An asynchronous write is executed after the processing, sending back the result, and 

the call back from the write starts an asynchronous read, completing the loop process. The 

TCP Server will take a pointer to a Processor class so the processing method can be 

customized to suit the implementation. 

4.5: URL CACHE 

URLs must not be crawled too often; the Spider must keep track of which URLs have been 

crawled so that they are not re-crawled too frequently. For example, they could have a time 

associated with them for when they can next be re-crawled. 

A simple solution would be to store a list of all URLs that have been crawled and for which 

the re-crawl delay has elapsed. When the URL is first crawled it can be added to this list and 

once the delay has elapsed it can be removed during a periodic purging process. Every time 

the crawler encounters a URL it can check it against this list; if the URL is not in the list it is 

crawled and added to the list, otherwise the URL is ignored and the crawler moves on to the 
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next one. Ideally the URLs would be normalized so that different variations of the same one 

are not crawled again. 

Maintaining large lists of URLs (or any data for that matter) can be resource intensive, 

especially if duplicates need to be looked up based on the URL name and old entries need to 

be purged based on their date/time stamp. Alternatively, re-ordering lists as data comes and 

goes can also be very time consuming. If a list is stored in memory, operations are often very 

rapid as jumping between different areas in the memory (seeking) is very fast, however the 

limitation is that the list size is restricted to the amount of available memory. In memory data 

structures are lost as soon as the program terminates, or if unforeseen circumstances cause 

the system they are running on to crash, power off or otherwise loose the contents of the 

memory. Storing the lists on a conventionally more cost effective device, like a hard drive 

means the list can grow much larger but disk seek time is much slower than memory seek 

time making an on-disk list much slower. As keeping track of duplicates is likely to be very 

important, storing them in memory may be risky. 

A more efficient system regularly used in databases is to use an index to quickly locate a 

section of a list where an entry exists or would exist. The index and data list will still change 

rapidly and both still need to be ordered in some way, so there are still performance related 

overheads but the ability to locate entries quickly is useful, especially when using such a 

method to identify duplicates. 

Indexes usually partially duplicate data that already exists in the main data list, so it is not 

particularly space efficient; however there is a trade-off between space efficiency and 

performance efficiency. For rapid look-ups an index could be used without a list, storing the 

full entry in a rapidly searchable structure. Common indexes used a B-Trees and B+-Trees 

however they may not be best suited to storing whole values. In many cases their 

implementations are aimed at partial values, such as the prefix of a data list entry. 

A basic option would be to implement an index using a MySQL database as a backend. With 

the different data types available for columns, and the ability to add indexes, look-ups should 

be suitably fast and all data changes, such as additions and removals are managed 

automatically by the database engine. With a quick implementation of tracking lists work on 

the crawler, which will rely on these, can begin.  

A possibly more powerful option, instead of a database engine is to use a purpose built index. 

The system which keeps track of duplicate URLs will need to be capable of checking rapidly if 

it already knows of a URL or not. The data structure used to store these will be a Trie. Figure 3 

shows a Trie. 
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FIGURE 3: A VISUAL REPRESENTATION OF A TRIE FROM WIKIPEDIA, PUBLIC DOMAIN AND CAN BE USED FOR ANY PURPOSE 

In Figure 3 the arrows contain key characters and the nodes represent the implied key of the 

path. The numbers by the nodes represent values associated with the key name implied by 

the path. Though there are several data structures often used for indexes, Tries have several 

benefits for this application. 

Duplicate prefixes do not waste space in Tries. To ensure this is a benefit, URLs will be stored 

in a specific format. This is necessary as they are made of two main parts, the domain and the 

path; roots of both meet in the middle. 

Domain roots are at the end of the string, a domain technically should end with a dot – where 

most people would write www.rdfas.com it would usually be automatically (internally) 

corrected to www.rdfas.com. with the extra dot at the end. The dot is effectively the root 

node of a domain which means domains have a root-last hierarchy; com is one of the first 

level nodes (otherwise known as a top-level domain). Figure 4 shows a tree of domains would 

be represented. 
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FIGURE 4: A TREE SHOWING SEVERAL DOMAINS AS A 
HIERARCHY 

 

FIGURE 5: A TREE SHOWING SEVERAL FOLDERS AS A 
HIERARCHY 
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As previously stated, the dot is the root, com and uk are first level nodes (top level domains), 

rdfas and co are second level nodes (co is a second level domain, though rdfas is not as it is 

not a common suffix), and so on with both wwws being leaf nodes. 

Paths start with the root. In the case of domains, the root is the slash, which is why as part of 

URL normalization www.rdfas.com would usually be corrected to www.rdfas.com/ (or 

www.rdfas.com./ though the dot is usually an automatic internal correction as part of the 

DNS lookup and not URL normalization). Figure 5 shows a folder hierarchy is. 

Domains have many common prefixes as the list of top (and second) level domains is very 

much restricted, so for example, it can be guaranteed that there will be many domains 

ending in com but none (currently valid) that end in test. Using this fact and the knowledge 

that Tries eliminate duplicate prefixes, the domain string will be reversed so that the dot root 

is at the beginning, making the whole path a root-first hierarchy. 

www.rdfas.com/test/page.html will become .moc.safdr.www/test/page.html which means 

the root is at the beginning and the hierarchy progresses from left to right. Note the http 

prefix is dropped as the Spider will only support http resources so it is unnecessary to store it. 

As a Trie indicates a character at each level and not a chunk of a string the whole domain is 

reversed, not just the structure meaning that domains sharing a common suffix will end up 

sharing a common prefix, which will then not be duplicated. An example is shown in Figure 6. 
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FIGURE 6: SEVERAL URLS SHOWN AS A FULL HIERARCHY WITH REVERSED DOMAINS 

Clearly the tree structure grows quickly, and even short domains take up lots of space when 

visualized. Each node represents an element in the Trie. It has a parent and it potentially has 

peers and children. In this implementation there is no need to recurse up the tree, so parent 

elements do not need to be stored. Each node will have an ID, starting from 1; it will point to 

its first child and its next peer. A pointer to 0 will represent a null node, in other words no 

node. 

Nodes at each level will not be sorted; there are several reasons for this. For sorting to be in 

any way effective the number of nodes at the level would need to be stored. However even 

knowing the number of nodes on each level does not indicate the distribution if they are 

sorted, for example if there are 10 nodes, they could be a to j continuously, or q to z, or some 

other set and if looking for m for example, jumping halfway through (as m is halfway through 

the alphabet) then searching left or right based on the value at that point will take just as 

long in both cases. Scanning in both directions will require each node to know its next peer 
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and last peer and the ability to jump to a point will mean the parent node will have to know 

all the IDs of its children. This poses several issues which are discussed below. If there is no 

list of children then the nodes will have to be scanned to find the middle, following the next 

or last peer pointers, which is no faster than just searching for that node in an unsorted list. 

Node entries need to be stored in blocks of a fixed size so that there is no need to expand or 

shrink the block. This is because making extra space contiguously or making use of free space 

can require data to be shifted which is extremely costly in hard drive operations. Storing a list 

of child nodes, as mentioned in the previous paragraph would either require space to be 

reserved for the list, or for the node’s entry block to be expanded. There are two ways to 

expand the block, either all data after the block would need to be shifted down to make 

space, or the data would be added at the end of the file and it would need a pointer from the 

original part to the part at the end. This fragmentation of data will severely degrade 

performance as many users of a Microsoft file system will be happy to complain about. 

In summary a Node needs to store the character itself, its next peer, its first child and 

whether or not it is terminal. Terminality indicates that from the root to the terminal node it 

is a full URL that has been seen before. As the blocks are of fixed size and are appended to 

the data stream their ID can be inferred from the position and intuitively the position can be 

calculated from the ID. Each pointer will be 64 bits giving a limit of 

18,446,744,073,709,551,616 entries which is likely to be far more than needed or even 

feasibly storable. 64 bits is 8 bytes, a terminality Boolean is 1 and a character is 1 making a 

node block 18 bytes. Compressed pointers will not be used as they will require data shifting 

which will cause the same issues discussed in the previous paragraph. 

Each Trie entry block will be structured as follows: 

nnnnnnnnccccccccvt 

 

Where nnnnnnnn is the next peer ID, cccccccc is the first child ID, v is the value (character) 

and t is the terminal indicator. The position of the block itself implies its own ID, as they start 

at 1 a block at offset 0 would have ID 1, a block at 18 the ID would be 2, and so on. 

For the following example short, unrealistic (or invalid) domains will be used so that the 

visualizations are smaller and more readable. As all domains end with a dot it means it is a 

root that will be common to all Trie entries after they have been rearranged. The URLs 

http://abc/1, http://edc/2, http://edc/3 and http://xyz/4 would be represented in a shown in 

Figure 7. 
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FIGURE 7: FOUR URLS SHOWN AS STORED IN A TRIE 

The data structure, comprised of node entry blocks could be visualized in progressive steps as 

shown in Figure 8; however the order and arrangement of nodes may vary based on the 

order added. 
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FIGURE 8: PROGRESSIVE STEPS SHOWING HOW FOUR URLS WOULD BE STORED IN A TRIE DATA STRUCTURE 

Each circle represents a node entry, the value in the circle is the node value (character), the 

numbers adjacent to the nodes are the inferred IDs and the numbers on the arrows are the 

pointer values. A downwards arrow represents a first child pointer, and an arrow across 

represents a next peer pointer. All nodes have both pointers but they will simply point to 0 if 

there is no child or peer and so they are not shown in the diagram. The bold circles represent 

terminal nodes. 

4.6: URL QUEUE 

A system is needed to tell the crawler processes which URL to crawl next. There are several 

ways to store such a list; a quick implementation would be to use a database system which 

would allow specific data types to be associated with columns. A performance increase may 

be offered by a more customized solution, tailored to utilize storage in memory, on disk or 

both 
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As outlined in the requirements, the URL queue affects the politeness of the crawler. If the 

queue is sending out too many URLs on the same server (or with the same domain) that 

server or site will get over-crawled. Essentially the solution is not to processes the list of URLs 

to-crawl sequentially, and analyse the URLs to ensure that the domains are also not crawled 

sequentially. The most effective method is to use a round-robin approach when considering 

the URL’s domain.  

For example a list containing: Would be best parsed in the order: 
 http://www.1.com/page1 
 http://www.1.com/page2 
 http://www.1.com/page3 
 http://www.2.com/page1 
 http://www.2.com/page2 
 http://www.2.com/page3 
 http://www.3.com/page1 
 http://www.3.com/page2 
 http://www.3.com/page3 

 http://www.1.com/page1 
 http://www.2.com/page1 
 http://www.3.com/page1 
 http://www.1.com/page2 
 http://www.2.com/page2 
 http://www.3.com/page2 
 http://www.1.com/page3 
 http://www.2.com/page3 
 http://www.3.com/page3 

 
This is so that all domains are crawled as infrequently as possible. Every time a URL is added 

to or removed from the list the order would need calculating to maintain the round-robin 

layout to prevent over-crawling. In practice this may not be possible as it could become very 

resource intensive as the list grows. 

The standard Trie (discussed in the previous section) can be taken further and can be used as 

a round-robin based URL queue, this variation has been given the name XTrie (Extreme Trie) 

to differentiate it from the original. Each XTrie entry block will require two more data values 

to be stored, a 64 bit pointer called the round robin pointer and the terminal byte will now 

store more than just terminality. If a node is terminal it can also have the state ‘to be done’. 

Any node can have the state ‘a child needs to be done’. All this information is encoded in the 

terminality character as previously only 1 of 8 bits were used. The XTrie could now be used as 

both a URL Cache and a URL Queue.  

Every time a URL is added, the last node again will be terminal to identify that it is a full URL 

but it will also be marked as to-do (or to be done). The recursive algorithm will work up the 

tree making sure all parent nodes have the state inherited to-do (or a child needs to be done). 

Once this is done a quick check at any level of the XTrie can tell whether or not a branch has 

to-do URLs on it. The round-robin pointer is similar to the first child pointer, except it does not 

point to the first child, just the next child to be used.  

The following pseudo code describes how finding a URL to be done from the XTrie is carried 

out: 
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//Starting Point 

CurrentNode = RootNode 

NextNode = CurrentNode.RoundRobin 

 

//Loop until a Terminal Node with To-Do is found 

While NextNode Not (To-Do And Terminal) 

 If (NextNode == Null) 

  NextNode = CurrentNode.FirstChild 

 Else 

  NextNode = NextNode.NextPeer 

 End If 

 If (NextNode == CurrentNode.RoundRobin) 

  Error “This situation should not occur!” 

 End If 

 

//If Inherited To-Do Move down a level in the XTrie 

 If NextNode Has Inherited To-Do 

  CurrentNode.RoundRobin = NextNode.NextPeer 

  CurrentNode = NextNode 

 NextNode = CurrentNode.RoundRobin 

 End If 

End While 

 

Upon leaving the While loop NextNode should be a terminal node which needs to be done. 

The URL can be found by logging the nodes values as the algorithm recurses down the XTrie. 

Each time it goes down a level in the XTrie the round-robin pointer is updated to the next 

child node for the next time it is used. 

Once a node is found that is terminal and to-do then the to-do flag must be cleared which 

may require inherited to-do flags to be cleared too. If the node had inherited to-do and to-do 

it means it still has children which need doing, in this case no recursion is needed to change 

parent nodes as this also implies they have children that need doing. Otherwise, if de-flagging 

the node will potentially cause the parent to change, all peers have to be checked for explicit 

or inherited to-do. If the result of this check results in a change of state for the parent then 

the parent is the current node and the check starts all over again, potentially until the root 

node is reached. This ensures all inherited to-do flags are correct, and if they are the ERROR in 

the pseudo code should never be reached. 

The same (unrealistic) example URLs described in the Trie would be built up in an XTrie in 

steps as in Figure 9. 
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FIGURE 9: PROGRESSIVE STEPS SHOWING HOW FOUR URLS WOULD BE STORED IN AN XTRIE DATA STRUCTURE. 

As before, each circle represents a node entry, the value in the circle is the node value 

(character), the numbers adjacent to the nodes are the inferred IDs and the numbers on the 

arrows are the pointer values. A downwards arrow represents a first child pointer, an arrow 

across represents a next peer pointer and a thick red arrow indicates the round-robin pointer. 

All nodes have all three pointers, they will simply point to 0 if there is no child or peer and so 

they are not shown in the diagram. The bold circles represent terminal nodes. Dark shaded 

nodes have a to-do flag and light shaded nodes have inherited to-do.  

A URL requested would follow the path of red arrows in the previous diagram (green and 

dashed in Figure 10) from the root at ID 1 to ID 6. Inherited to-do and to-do markers would be 

removed and the round-robin pointers would increment to the next child where they are 

encountered and if another child exists. Light grey arrows are round-robin pointers that still 

exist but will never be followed, unless a new URL is added down that path (see Figure 10). 
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FIGURE 10: STEPS SHOWING HOW URLS ARE QUEUED AND EXTRACTED FROM AN XTRIE 

Now for the next URL request a completely different path will be taken, ensuring no two 

same domains, or any part of the path where this is a branch, is returned in successive 

requests. The following two URL requests are illustrated in Figure 11 in the same format: 
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FIGURE 11: FURTHER STEPS SHOW HOW URLS ARE QUEUED AND EXTRACTED FROM AN XTRIE 

At some points the round-robin pointers would have incremented then moved back to the 

start, these are not shown. Though this system may seem complicated, it should be very 

successful at ensuring that over-crawling does not exist when there are other domains 

available in the queue. This service will actually run as two TCP servers, one to accept 

incoming URLs and one to accept requests for a new URL to crawl. 

4.7: ROBOTS CACHE 

Staying out of restricted areas is a very big part of a crawler’s politeness and was discussed in 

the requirements. It is relatively easy to deal with as there is a system in place for informing 

crawlers of where they are and are not allowed to go. The robots file, found at the root of the 

site. This can be parsed the first time the domain is accessed and a list of inaccessible URLs 

can be generated for that domain, then when the crawler is instructed to access a page on 

that domain it can check whether to proceed or not. To minimize bandwidth overhead the 

robots file could be cached for a certain period of time, but care would need to be taken to 

make sure it is not cached for too long.  

There are three parts needed for the robots system, a parser for the robots file to determine 

which rules apply to the Spider and then an interpreter to decide whether a specific URL is 

blocked, and finally a cache so that the robots file does not need to be retrieved for every 

page, just once every so often. 

The robots parser will take the raw robots data and the User Agent of the Spider. It will then 

calculate which rules apply to its User Agent, and represent them as a compressed format 

string. This string can then be stored in the cache and passed to the robots parser in the 

future, meaning that minimal data is cached and the robots file is only parsed once per fresh 

retrieval. Once the robots parser has the relevant data it will be able to calculate which URLs 

are allowed to be crawled and which are not.  

The robots parser will handle the Disallow command, as specified by the robots exclusion 

standard, but also the Allow command. When there is ambiguity about which rule applies the 

most specific or longest match will be used. 

The Robots Cache will run as a TCP Server. When the crawler needs to check a robots rule it 

will request the compressed robots string from the server and if needed, the server will fetch 

the file and process it to extract the string which will be cached and sent. However if a cached 
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version already exists it will send the cached version. When the Crawler receives the data it 

will use the parser again to check whether the URL it is about to crawl is allowed. The Robots 

Cache will store data in a MySQL database primarily, however if time permits a dedicated 

structure will supersede it.  

Web masters often like to know why their site is being visited, to identify the crawler it will 

have a descriptive User-Agent which will state that is the RDFaS Crawler, with a link to a page 

describing the Spider and its politeness policy. 

4.8: CRAWLER 

The crawler will implement the design outlined in the overview section (4.1). The crawling 

stages in the overview will be called in a loop; however some stages (namely indexing) could 

block the process for a substantial amount of time. To allow each machine to crawl rapidly 

each crawler process will start many threads. 

At some point the crawler might have to stop, either by choice (a stopping condition) or 

because of resource limitations (such as disk space). If the desire is to simply crawl as much as 

possible before resources are exhausted then the crawler stops when it runs out of the most 

limited resource, for example disk space. In this case it should not be too difficult to predict 

roughly how many pages will be included in the crawl and how long it might take. Another 

such method would be to stop after a specific number of pages have been crawled, or after a 

certain amount of time. 

An indirect limit on pages crawled is to restrict the depth. The seed page has depth n. Every 

page found from the seed page has a depth of n – 1. Every page found from those pages have 

a depth of (n – 1) – 1, n – 1 being the depth of the page they were discovered on, and so on. 

Once the depth of a page reaches zero it is still indexed, but any links found on it are ignored 

and are not added to the crawl queue. Depth limits will be used so that sites can be explored 

a specific distance from the seed site(s). 

4.8.1: REQUEST URL TO CRAWL 

The crawler’s main loop starts by determining which URL it should crawl next. To do this it 

makes a request to the URL Queue over a TCP connection. The URL Queue then sends back a 

URL, if one exists and the depth of that URL, so that when subsequent URLs are discovered 

their new depth can be calculated. 

4.8.2: DOWNLOAD PAGE 

There are three areas of the Spider which require pages to be downloaded. The crawler itself 

needs to download pages, as does the robots cache sever (described in detail in section 4.7) 

and submitting to the Triple Store uses a HTTP POST method which submits the data as a 

request and downloads the response, this is discussed in section 4.9. 

C++ does not have any built in libraries to handle downloading content from web servers, but 

it can manage sockets on a low level, or alternatively the 3rd party Boost library could be used 

for its ASIO (Asynchronous IO) classes. There is also a C implementation of a class to 

download files called Curl which has C++ wrappers. 



 Chapter 4: Design 39 
 

 39 

Curl is a commonly used library for downloading files and generally making HTTP related 

requests, it is implemented in C but can easily be used in C++ directly or by using the wrapper 

library called Curl++ (curlpp). As specified by the requirements Curl supports timeouts, 

custom headers and POST, therefore it will be used to download pages. 

4.8.3: EXTRACT LINKS 

The crawler needs to extract links from pages it has downloaded so that it can discover other 

un-crawled pages. A simple way to extract links would be to parse the string, looking for start 

link (anchor) tags “<a” and matching end link tags “</a>” and then to search the content in 

between for a link or “href=” followed by a link. Crude string parsing can often be slow, 

restrictive and difficult to modify; a more efficient method would be to use a regular 

expression. 

Regular expressions are one of the most common techniques used for parsing text, amongst 

other things. A regular expression could be used to find all tags starting with “<a” that contain 

“href=” and extracting as a group the content within quotes after the “href=” section. It 

should be case insensitive and lenient about whitespace appearing in different sections, for 

example between < and A. 

Web Browsers parse web pages and use their hierarchical structure to create a DOM or 

Document Object Model, where the HTML elements on the pages (mainly represented as 

HTML tags, e.g. “<a … /a>”) are represented hierarchically as objects. Thus allowing the 

selection of all elements of a type, such as the “<a” tags that are used for links. This type of 

interpretation of a web page may be over the top as processing all the elements just to 

extract links could be unnecessary. 

C++ does not contain any built-in methods for dealing with Regular Expressions or 

representing HTML pages as Document Object Models, but fortunately the invaluable Boost 

library has a set of classes for using Regular Expressions. To parse and extract links a Regular 

Expression will be compiled using: 

<\s*A\s+[^>]*href\s*=\s*"([^"]*)" 

 

This Regular Expression will find anchor tags which contain links, and extract the link portion 

as a group. It can easily be modified to make it more restrictive, for example to crawl only 

one domain. The matches will then be iterated over to create a list of URLs found on the 

page. So that the crawl does not grow too large only the first 100 links will be collected from 

any page. 

4.8.4: CHECKING FOR DUPLICATES 

To ensure that duplicate URLs are correctly identified they will first be normalized using a URL 

class. The URL class will take the raw URL string and break it up into protocol, domain and 

path; these sections will then be normalized according to RFC 3986. As with the Robots 

Server, the URL Cache will also run as a TCP Server, which stores URLs that have been 

Crawled in a Trie as described in section 4.6.1 so that all crawlers can access the cache. 

4.8.5: QUEUE UNIQUE URLS 
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Discovered URLs that are unique will then need to be queued to be crawled. The URLs are 

sent to the URL Queue over a TCP connection along with their depth, which is 1 less than the 

depth of the URL they were discovered on.  

4.9: INDEXING 

Indexing will be done in the crawler to eliminate the need to store the pages, as they are not 

needed later for references or extra processing. Storing them temporarily will only take up 

unnecessary disk space and bandwidth. 

4.9.1: TRIPLE STORE 

Sesame can be accessed by two methods; a Java API allows direct access through the storage 

backend or remote access via the web interface, and a standard ‘web client’ can commit and 

retrieve data through the Apache TomCat interface. Non-Java remote access of Sesame is 

only available using a web client, which is again where the file downloading class will be used. 

Sesame through TomCat makes use of HTTP verbs; GET requests are queries, POST requests 

with request data are used to submit triples and DELETE requests can be used to remove 

data.  

INPUT 

The parser used by the crawler (pyRDFa) can output to several formats of RDF: RDF+XML, 

Turtle and N-Triples. Fortunately, Sesame can accept all these formats and more. To submit 

data a POST request is made to the Sesame server, in this request a querystring is used to 

specify the BaseURI and Context, both of which have to be URL Encoded. The request has a 

body which contains the RDF data, this body must either have its length specified in the 

request headers or be sent using chunked encoding. The request header must also specify 

content type so that Sesame knows the format of the incoming triples. If all goes well a 204 

“No Content “response is returned which means the request was OK but the server has 

nothing to return. 

QUERIES AND OUTPUT 

As a low priority the ability to query the Sesame database may be made available through a 

web interface. Queries will be made using the SPARQL query language and sent to Sesame as 

a HTTP GET request. The return response will then be interpreted and the results displayed. 

4.9.2: PARSE RDFA 

As the requirements stated the indexer needs to parse RDFa. There are two main approaches 

to this requirement, either create a parser or use a third-party one. Creating a parser may be 

an exercise in futility as there are many fully featured third-party parsers available in most 

common languages (RDFa, 2010). Creating one would only be necessary if it is either not 

available in the language of choice, or if it would provide a feature that none of the currently 

available ones do. Notably RDFa Distiller (also known as pyRDFa), which is W3C’s official 

implementation, is currently in public use as part of their semantic tools (W3C, 2010). 

The RDFa parser and convertor provided by W3C is open source and freely available for 

developers to use in custom implementations. The public W3C version called RDFa Distiller is 

based on pyRDFa, the aforementioned open source parser made by Ivan Herman. pyRDFa is 
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mainly a library; however it contains a few sample implementations; one of which can take a 

file which contains RDFa and convert it to RDF. The crawler will use such a method to parse 

html pages. 

Once a page has been downloaded by the crawler and it has completed extracting links it will 

be saved to a temporary file on disk. A Python script utilizing pyRDFa (which itself is written in 

Python) will then be called by the crawler and instructed to parse the temporary file. 

Executing the parser is a blocking call so that thread of the crawler waits for the parser to 

finish. The resultant RDF is returned through the output stream. The crawler pre-emptively 

tries to determine whether a page should be parsed by checking if the page contains RDF(a) 

related keywords or XML namespace declarations which often imply RDFa markup. 

Invoking external applications is often risky but as pyRDFa seems to be one of the best, stable 

parsers then it is a situation that will have to be tolerated. 

4.9.3: STORING RDF 

Data will be stored using a Triple Store called Sesame. There are many Triple Stores available, 

however some have requirements that are not realistic for this project, for example 4Store 

recommends 64 bit hardware and 16 GB of RAM per storage node. Sesame has been 

recommended for this project by several individuals who are very experienced in the area of 

the semantic web and the technologies associated with it, so it will be the Triple Store used. 
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CHAPTER 5: IMPLEMENTATION AND TESTING 

5.1: IMPLEMENTATION 

5.1.1: OVERVIEW 

The shared nature of many of the components developed for this project meant that a lot of 

code was developed as C++ header-only libraries which were then imported into the 

applications that required them. The overall structure provoked a standard library and 

application naming convention, where each class library project was prefixed with rdfas_lib 

and each application (server service) was prefixed with rdfas_app. The interactions and 

services are summarized in Figure 12: 

rdfas_app_settingserver

rdfas_app_logserver

rdfas_app_itdserver

rdfas_app_core

rdfas_app_crawler

rdfas_app_powercache

rdfas_app_robotserver

rdfas_app_crawlerrdfas_app_crawlerrdfas_app_crawlerrdfas_app_crawler

rdfas_app_corerdfas_app_corerdfas_app_corerdfas_app_core

Sesame Triple Store

 

FIGURE 12: THE IMPLEMENTED ARCHITECTURE OF THE SPIDER 

These applications and how they have been implemented will be described in detail in this 

chapter. The applications themselves do little but tie powerful libraries together, so the 

libraries are also discussed. 

The design called for a several main components which have been created as applications: 

 Robots Cache  rdfas_app_robotserver 

 URL Queue  rdfas_app_itdserver 

 Crawler   rdfas_app_crawler 

 URL Cache  rdfas_app_powercache 

Some of the other applications which do not link with the original design were created to 

make the system easier to control and monitor. The final implementation consisted of 23 C++ 

projects, some applications and some libraries which in total contained 50 classes. 

5.1.2: LIBRARIES 

COMMON 

As the name suggests, the common library implements functions that are utilized by most of 

the other parts of the system. Classes in the library include support for processing strings, 

interacting with the file system, retrieving system information from Linux, URL representation 
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and normalization, Pointer conversion, managing Log and Settings files and a thread-safe 

integer. 

CACHE 

The Cache library implements the Trie structure described in section 4.6.1. Several steps were 

made to improve the performance of the Trie as the basic implementations method of 

storing data using a file stream only allows one request at a time. Locking was implemented 

to allow multithreaded access as a block cannot be read while it is being written by another 

thread; each block could be locked for read or write access. Multiple read locks can occur 

concurrently but a write lock prevents read locks until it is complete. Though in theory this 

would work efficiently, the overhead of the locking system slowed the system down more 

than just queuing requests and handling them one at a time.  

As locking did not provide a suitable performance increase the next logical step was to speed 

up each Trie interaction. This was done with block caching; the last ten million blocks 

(approximately 180 Mb) are cached in memory. When they are read they are stored in a map 

which links their ID to the data, and when they are saved, the cache is updated as file stream 

data is updated. As updates apply to both the cache and the file stream during data access 

the cache only needs to check the file stream if the block is not cached because it can 

otherwise guarantee that the file stream entry has not changed since last use. Performance 

tests were carried out with block caching and different file system accesses methods, the 

results are in Chapter 6. 

LOCKING 

The locking library was created to provide a central method for locking resources. It was 

intended to be used by the Trie implementations to synchronize the Trie entry blocks under 

multithreaded access. The locking library has two methods of determining whether a 

resource is free, it either maintains a map of ID’s to Mutexes so each resource can be directly 

locked, or there is a list of locks and a Mutex allowing access to the list. The locking system is 

not currently enabled in the Trie implementations as the overhead for Mutexes was more 

than the performance gain.  

QUEUE 

The XTrie design did not work out as planned, the heavy level of recursion sometimes 

required to update inheritance flags caused it to be very slow as it had to potentially look up 

hundreds of nodes to check their flag values. The system used to replace the XTrie was called 

the Paged Queue. 

Instead of maintaining a potentially massive list of entries which are continuously sorted to 

avoid over crawling, the data is broken up into ‘Pages’, a concept abstracted from database 

and memory data management. There are two types of Page used, a Queue Page and a 

Temporary Page; each page has its own file. Files are used for two reasons, so that queues 

can grow large and so that the data is persistent if the application using it crashes. 

A Queue Page takes all entries upon its construction and saves them to the associated file. 

Then when entries are requested, they are returned in order, and as they are a marker is 

written in the file by that entry to indicate that it has already been processed. Then if the 
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application crashes it can resume from where it left off. Alternatively Temporary Pages start 

empty and fill up as entries are added to them, once the page is deemed full all the entries 

can be dumped in one go as a vector of strings. 

The library’s main interface provides two methods - add and get; and as the name suggests 

the overall library behaves like a queue. As entries are added they are stored in a Temporary 

Page, when the Temporary Page becomes full (determined by a maximum size) the queue is 

emptied into memory, sorted and saved in a Queue Page. When an entry is requested it is 

taken from the current queue page. 

Two Page Managers are used, one for the Queue Pages and one for Temporary Pages. They 

keep track of available free pages, used pages and the current page in use. Every time the 

current Queue Page is emptied the Page Manager selects the next Queue Page to be used as 

the current Queue Page and removes the empty one. A separate thread is used to process 

temporary pages so that it does not block the “add” or “get” processes. If a Temporary Page 

is filled the Page Manager creates a new one to be used while the old one is being processed. 

If lots of entries are being added rapidly then Temporary Pages are repeatedly created as 

they fill up and the full ones are processed one at a time on the other thread. 

Temporary Pages are processed and saved as Queue Pages in an attempt to avoid over-

crawling of a domain. Each entry is known to be a URL and so the first step extracts all the 

domains and counts them. A value called the diversity threshold determines how common 

the most common domain can be, for example a diversity threshold of 0.5 means that at 

most the most common domain can make up 50% of the whole set. Any entries with domains 

that violate the diversity threshold are removed and added to the current Temporary Page in 

the hope that they can be filtered out with new entries. The diversity threshold is 

automatically tuned, this is done by looking at how many requests were made since the last 

Temporary Page was processed and divided by the time since the last processing to give an 

estimated number of “gets” per second. The diversity is set to the reciprocal of this number 

so that in theory, if the crawl rate is steady no domain will be crawled more than once a 

second. 

The process of sorting spreads the domains out in the list as much as possible. For the sake of 

example, imagine the domains are the numbers 1 to 5, and as paths and other elements of 

the URL make no difference, they will be ignored. If there are 20 domains: 

1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 

 

The domains are processed in the order of their frequency, with the most frequent being 

first. In this example this is domain 1 with the frequency of 7. The total, 20 is then divided by 

7 which is 2.85. Starting from the index 0 the domain 1 is added at every 3.3 positions in the 

new queue (which has the same number of positions as the diversity pruned temporary 

queue): 

1 _ _ 1 _ _ 1 _ _ 1 _ 1 _ _ 1 _ _ 1 _ _ 

 

The same process is done for the next most frequent domain, starting from the first available 
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index. If an entry already exists at that index the index is incremented or decremented 

depending on where the remaining space is. The final result is: 

1 2 3 1 4 2 1 3 5 1 2 1 3 4 1 2 4 1 3 2 

DOWNLOAD FILE 

The design of the Download File library called for the use of a third-party library called Curl 

(and possibly its C++ wrapper Curl++). It was required that the Download File library would 

need to be able to run on several threads simultaneously so that it could be effectively 

implemented into the Crawler. Curl uses a call back to process incoming data, and due to its 

basis in C this call back and a few would-be class level variables it uses needed to be static in 

C++. If two threads finish downloads at the same time, the call back called simultaneously 

from the two threads cannot share access to the static variables and it often causes a 

Segmentation Fault. A Segmentation Fault is an error that occurs when a program attempts 

to access a memory location that it is not allowed to. 

The Download File library had to be made from the ground up in the end. The interaction 

with remote servers is carried out using Boost’s ASIO (Asynchronous IO) library. When a page 

is to be downloaded the URL is disassembled to extract the host, port and path which are 

then fed into a class in the Download File library called the HTTP Client. The client starts an IO 

Service which connects to the host on the specified port and sends the request formed by the 

parameters passed to the client. Boost ASIO does not support timeouts internally so a 

separate thread runs to track the connection time and terminates the IO Service if a pre-set 

delay is reached. The Download File class that starts the HTTP Client controls all parameters 

such as timeout, HTTP Request Verb, Accept types and request data. The response is 

returned as a string. 

MYSQL CLIENT 

Basic versions of the tracking lists, before the cache and queue were implemented were built 

on MySQL tables. The MySQL client allows C++ applications to insert and retrieve data from 

MySQL database tables. Inserting data is done through MySQL statements as strings and 

retrieving data returns a vector of maps, where each element in the vector corresponds to a 

row and each map entry is a mapping from a column/field name to a value. 

RDFA 

The RDFa library performs three main functions, it can parse RDFa pages and return RDF, 

decide whether or not it would be worth parsing a HTML page and it can submit RDF data to 

the Sesame  Triple Store. Parsing is achieved by executing a custom Python script which calls 

pyRDFa, the W3C parser. RDF is sent to Sesame using the Download File library using the 

POST verb, sending the data itself as the request body. 

ROBOTS 

The robots class was successfully implemented as described in the design chapter. A small 

enhancement was added to ensure it was as effective as possible. The User-Agent tests 

match the first section of the string, anything before a whitespace character, after it was 

converted to lowercase. This is because spiders often use a long User-Agent to identify 

themselves, with a URL linking to a crawler help page, but they respond to any rules listed for 
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the short or prefix version of their User-Agent. For example, Google’s web crawler obeys 

rules listed for “GoogleBot” but supplies the User-Agent of "Googlebot 

(+http://www.googlebot.com/bot.html)” amongst others. 

SERVICE 

In Linux for an application to run as a service it must fork itself off, this means (in the case of a 

service) the section of the code after the fork command is executed in a different process and 

the original process terminates. The service class is designed to be inherited by an application 

whose main method can then either call Run or ForkedRun. Run starts the application 

normally, in a blocking manner whereas ForkedRun forks the main application as another 

process and terminates the original process. 

TCP SERVER 

The TCP Server implements Boost’s ASIO (Asynchronous IO) library to create an IO service 

listening on a specified port and with a pointer to a Processor instance which will later be 

used to deal with requests. When a connection is received a new Session is started which 

immediately begins an asynchronous read. Every time a request is received it is processed 

using the aforementioned Processor and the result is returned followed by an asynchronous 

read again. This loop continues until a socket error occurs (which happens if the client 

disconnects) and then the Session is stopped and destroyed. The TCP Server is used in almost 

all of the main applications. 

TCP CLIENT 

The TCP Client implements Boost’s ASIO (Asynchronous IO) library to create an IO service 

which connects to a host on a specific port. The Client is used to communicate with TCP 

Service instances and relies on the request-response system used. When the TCP Client’s 

write method is called with a request string, the string is sent to the corresponding host then 

the client waits until a full response (ending in a new line) is received. Upon receipt of a 

response the data is returned to the calling method. 

TCP SERVICE CLIENT 

The TCP Service Client extends the basic TCP client, making it more suitable for connecting to 

TCP Server based services whilst minimizing errors. Its primary use is in the Crawler because it 

needs to maintain error free, uninterrupted connections to most of the services. Instead of 

taking a port and a host it takes a service and a host as connection parameters. The service 

identifier is used to lookup a host from the Setting Server (which tracks the servers on which 

the services are running, as discussed in section 5.2.3). The request process is similar to that 

of the TCP Client, sending a request string and waiting for a response, however if an error 

occurs the client will attempt to reconnect and then resend the request.  

SETTING CLIENT 

The Setting Client is another extension of the TCP Client which is aimed specifically at 

communicating with the Setting Server (described in section 5.2.3). It automatically connects 

to the host named “master” on the default setting server port. It cannot send custom request 

strings like the TCP Client but provides methods for retrieving and changing setting value 

pairs as well as requesting host lists for different services. The methods and their necessity 
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will become clearer with the explanation of the Setting Server and Node Discovery on section 

5.2.3. 

SERVICE ANNOUNCER 

The Service Announcer is yet another extension of the TCP client which has one purpose, to 

announce the presence of a running service to the Spider system. The class automatically 

connects to the Setting Server on the host named “master” on the default setting server port. 

Upon creation the Announcer takes a service name which it sends to the setting server along 

with the host’s name, this process repeats every 10 seconds while the service is running. This 

is known as the service’s heartbeat. 

LOG CLIENT 

The Log Client is the last extension to the TCP client. The Log Client can take log messages and 

send them to the Log Server. It takes message priority level (Info, Warning, Error and Debug) 

and the message itself as parameters and converts them to the format the log server 

requires. 

5.1.3: APPLICATIONS 

SETTING SERVER AND NODE DISCOVERY 

The setting server provides both a centralized location for programs to discover which servers 

are running services and a place to store and retrieve common settings. Because it keeps 

track of servers and services it means that services do not always have to run on the same 

server, however the setting server does to an extent as it is always accessed by the DNS name 

“master”. DNS is used to resolve server names to IPs so master can be changed to point to 

another server. When services “check-in” with the setting server they register their host 

name so when another server needs to connect it still uses DNS as the final resolution step. 

Every 20 seconds a check is done and services that have not sent a heartbeat since the last 

check are removed from the internal list of running services, which is why services send a 

heartbeat every 10 seconds. Settings and values are stored in a setting file provided by the 

common library so that they are persistent in the event of a failure. 

CORE 

The core service does not perform any specific functions; it just runs as a service with a 

service announcer to inform the setting server of which servers are online. 

LOG SERVER 

The log server takes logging data from TCP clients and archives it in a log file using a storage 

mechanism provided by the common library. Clients can also access all or chunks of the logs. 

ROBOTS SERVER 

The robots server, as described in the design chapter takes requests for robots data for a 

specific domain. It either retrieves it from the cache if it exists, or it downloads and processes 

the robots file then caches and sends the response. 

POWER CACHE (DUPLICATE URLS) 

The Power Cache provides a public, central interface to the Cache library. All crawlers can 

access this to check if a URL has already been crawled. Formatting checks are done upon 
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receipt of a URL to ensure that it is a valid URL to ensure no arbitrary data is put in the Cache 

which could potentially slow it down. A Mutex is used to ensure only one request is 

processed at a time. As the cache did not perform as well as expected (results in Chapter 6) 

each crawler also cached the last 10,000 URLs it had discovered in an attempt to minimize 

load on the main cache. 

ITD SERVER (INSERT AND TO-DO/ URL QUEUE) 

The ITD Server is the service which provides a centralized URL queue; though the design 

called for the use of a Trie variation this did not hold up under performance tests and a 

different, Paged Queue system was designed and used (discussed in section 5.2.2). A Mutex is 

used to ensure only one request is processed at a time. 

CRAWLER 

The Crawler application itself starts a specified number of threads all running the Crawler 

class on repeat. The Crawler class starts by requesting a page from the ITD Server, if none are 

available it waits for a second and tries again as the ITD Server may be processing a page. 

When a URL has been received to be crawled the domain is extracted and robots data is 

requested for it so that the robots parser can then check if the URL is allowed to be crawled. 

If the URL is allowed to be crawled it is downloaded and the content-type is checked, the 

crawler proceeds to the next step if it is a type html page. A regular expression is used to 

extract links, the first 100 links are checked against the power cache and if they are unique 

then they are sent to the ITD Server. Finally the page data is checked by the RDFa library and 

it if is deemed that it should be parsed for RDFa it is then run through W3C’s RDFa parser 

pyRDFa and the results are uploaded to Sesame. To improve performance each crawler 

caches around 10,000 Power Cache and Robots requests and their results. 

5.1.5: STORAGE 

Of the many distributed fault-tolerant file systems 5 were installed and tested; these were 

MooseFS (MFS), Cloudstore (Kosomos), Lustre, XtreemFS and GlusterFS. If they could be 

installed successfully their feature set was analysed and if these features were suitable then 

performance was also tested. All installation tests were done on Ubuntu 9.10 under four 

nodes (servers) running on the VirtualBox virtual machine. 

Cloudstore (Kosomos) was extremely difficult to install, it contained minimal help and proved 

very hard to compile due to dependency issues. Due to limited time constraints no serious 

attempts were made to struggle through the dependency mess so Cloudstore was discounted 

as an option. 

Lustre, a High-Availability, striping file system now maintained by Sun (Oracle) was easy to 

install and configure, however on closer inspection it has no fault-tolerance. The data is 

striped across all nodes, but only one copy is ever made. File performance parameters had to 

be manually set so the number of stripes and sizes could not be easily controlled. 

XtreemFS was equally easy to set up and configure, but once again its main aim was High-

Availability. In this case there was no striping so redundancy was the mechanism that 

provided High-Availability but data cannot automatically span several machines. Furthermore 

it is designed to work over the internet with an encryption layer which adds overhead. Adding 
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files to XtreemFS was not as easy as copying them into a folder, for each file the system had 

to be told how many times to replicate it. 

GlusterFS is very similar to XtreemFS in the way it works. It was more difficult to install on an 

existing operating system, however it does have its own operating system based on Fedora 

Core where it is preinstalled. It accesses drives at a low level setting up a form of network 

based RAID (either 1 OR 0, not both) which again means either redundancy or striping, but 

not both. 

MooseFS (MFS) is a file system project which was very impressive and far surpassed 

expectations on features, stability and performance! Like Cloudstore, it claims to be based on 

Google’s GFS but unlike Cloudstore it was very easy to install and configure. Access is very 

simple through a FUSE library, allowing a MFS cluster to be mounted as a folder in Linux. A 

few small tools allow file’s and folder’s replication counts to be set either individually or 

recursively and once set they could be inherited. With all these benefits MFS was used as a 

storage system. 

 5.2: TESTING 

C++ is a language that does not have built in memory management and garbage collection. 

This means that it is more susceptible to memory leaks than languages like C# and Java. 

Valgrind contains tools which can be used to profile programs and detect problems including 

threading and memory errors. To attempt to ensure that the applications and libraries 

developed were free of such errors they were all tested with Valgrind and changes were 

made when errors were found. The libraries had test applications associated with them so 

that all aspects of the library could also be tested. 
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CHAPTER 6: RESULTS AND DISCUSSION 
The Spider is made up of a number of components, so during testing and evaluation both the 

individual components were tested, and the system as a whole. All tests were carried out on 

the same set of hardware, as described in section 6.1. 

6.1: HARDWARE AND INFRASTRUCTURE 

A cluster of 24 computers was used to run the system. Each machine was running Ubuntu 
9.10 with Python and GCC development tools. The Power Cache and ITD Server were run on 
the most powerful server, the setting server was run on the routing server and crawlers were 
run on all but the routing server. The routing server also hosted No Machine (remote 
desktop) sessions and provided DNS services to the cluster. The cluster specification and 
images are in Appendix A and Appendix B. 

6.2: CRAWLER 

6.2.1: URL QUEUE 

The requirements define the need for a queue structure capable of queuing URLs, but more 

specifically the politeness requirements dictate that it should analyse the domains of the 

URLs at some point and re-arrange them so that none are crawled sequentially, and ideally 

each is crawled as infrequently as possible. Two important tests were carried out, one 

checked that everything entering the queue eventually left the queue, and the other tested 

the diversity of URLs leaving the queue. The automatic diversity tuning means the attempted 

diversity is based on the previous rate of requests, therefore in the tests the rate of requests 

is controlled so that the ideal diversity can be known. 

In the tests the request rate was no less than 10 per second so the expected diversity was 

never higher than 0.1. The diversity of input URLs matched the expected output diversity 

because if the input is less diverse than the expected output the queue cannot compensate 

as it has nothing with which to pad it out, so the peak diversity is recorded (the least diverse 

output set, where a set is all the URLs output in one second). If the average output diversity 

was taken it would exactly match the input which is why it is not measured. The results are 

detailed in Table 2. 

Note: a diversity of 0.1 (or 1/10) means out of 10 URLs none will have the same domain, and 

therefore a diversity 0.01 (or 1/100) means out of 100 URLs none will have the same domain. 

 URLs In URLs Out Request Rate Expected Diversity Actual Peak Diversity 

1 100 100 10/sec 0.1 0.1 

2 1,000 1,000 50/sec 0.02 0.02 

3 10,000 10,000 100/sec 0.01 0.01 

4 100,000 100,000 1000/sec 0.001 0.001 

5 1,000,000 1,000,000 1000/sec 0.001 0.001 
TABLE 2: URL QUEUE TEST RESULTS 

The Queue performed as expected. A potential bottleneck does exist; if lots of requests are 

made to the queue and the queue has no processed data and only temporary data then it 
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must process the temporary data causing the requests to hang until it is done. This often 

occurs at the beginning and end of a crawl. 

6.2.2: POLITENESS 

The politeness requirements are implemented in three parts of the system, the URL Queue, 

the URL Cache and in the Crawler. The URL Queue and Cache are discussed in sections 6.2.1 

and 6.2.5 respectively.  The Crawler checks whether a URL is allowed to be crawled by testing 

it against the domain’s robots.txt rules (the Robots Exclusion Standard). There are four main 

areas to be tested in the Robots parser: the Disallow keyword, the Allow keyword, User-

Agent checking and specific rule matching. Tests were carried out using the following robots 

data: 

User-Agent: RDFaSbot 

Allow: /bad/but/ok 

Disallow: /be 

Disallow: /bad/ 

 

User-Agent: * 

Disallow: /secret/ 

Allow: /secondary/ 

 

The robots data was tested against different user agents and paths to see if the expected 

results matched up with the actual results. “Yes” means the parser deemed the URL to be 

crawl-able and “No” means it did not. The results are listed in Table 3. 

 User-Agent Path Expected Result Actual Result 

1 RDFaSbot /bad No No 

2 RDFaSbot /base No No 

3 RDFaSbot /bad/more No No 

4 RDFaSbot /bad/but No No 

5 RDFaSbot /bad/but/ok Yes Yes 

6 RDFaSbot /bad/but/ok/and Yes Yes 

7 RDFaSbot /bad/but/okeydokey Yes Yes 

8 Googlebot /test/ Yes Yes 

9 Googlebot /secret/code No No 

10 Googlebot /secondary/more-specific Yes Yes 

11 RDFaSbot /secret/ Yes Yes 
TABLE 3: ROBOTS PARSER TEST RESULTS 

Tests 1-7 checked User-Agent matching and basic disallow and allow rules. Tests 8-10 

checked wildcard rules with test 10 also checking a more specific (or longest) rule overrode a 

previous rule. Test 11 checked that a matched User-Agent was not also tested against the 

wildcard rules. All the tests performed as expected so it can be assumed that the crawler 

obeys the Robots Exclusion Standard. 

6.2.3: DOWNLOADING PAGES 

Downloading pages, when required, will need to be done as quickly as the internet 

connection and corresponding server will allow, so that the task does not become a limiting 
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factor. As the requirements specified it also needs to be able to timeout so that it does not 

indefinitely block the crawling thread if the server is too busy to respond or packets are lost. 

The requirements also state that the crawler must only download or accept files which 

contain text or html, and it should ignore other files. To test the Download File class 6 test 

pages were created to test specific scenarios. Tests were done over a 100Mbit LAN 

connection to a web server, the default timeout is 30 seconds. Table 4 shows the results. 

 Test Scenario Expected Result Actual Result 

1 Page with 30 Second Delay Client Timeout Client Timeout 

2 Page with 29 Second Delay Download Succeeded Download Succeeded 

3 10Mb HTML Page Download at 12 Mb/s Download at 11.5 Mb/s 

4 PDF Document Invalid content type Invalid content type 

5 Image Invalid content type Invalid content type 

6 2Kb HTML Page Download Succeeded Download Succeeded 
TABLE 4: DOWNLOAD FILE CLASS TEST RESULTS 

Tests 1 and 2 checked the timeout threshold with test 1 taking as long as the timeout to load, 

with the small added delay of latency it just went over the 30 second mark and caused a 

timeout. Test 3 is a large page to measure the maximum I/O rate, with a 100Mbit connection 

the best speed achievable is 12 Mb/sec; the result of 11.5 Mb/sec is more than acceptable as 

packet overhead means full theoretical speed is rarely achieved. Tests 4 and 5 check content 

type restrictions are working and finally test 6 is an average page to be accepted and 

downloaded. Contrary to the requirements, the Download File class is not fully HTTP 1.1 

compliant due to time constraints. 

6.2.4: EXTRACTING LINKS 

So that the crawler can find other pages to crawl the requirements specify that it must be 

able to extract the URL from links on pages. The use of regular expressions means that even if 

a page is not fully compliant with a HTML standard the links should still be extractable unless 

the links themselves are largely malformed. Tests were done on the link extraction system to 

make sure that it can extract at most 100 links from a page with valid markup and to discover 

how it handles pages with invalid markup. Common markups were tested and the validity of a 

page’s markup was determined by W3C’s validator service. The results are listed in Table 5. 

 Markup Version Valid Links on Page Links found 

1 XHTML 1.0 Transitional Yes 1 1 

2 XHTML 1.0 Transitional Yes 100 100 

3 XHTML 1.0 Transitional Yes 200 100 

4 XHTML 1.0 Transitional No 100 100 

5 HTML 4.01 Strict Yes 1 1 

6 HTML 4.01 Strict Yes 100 100 

7 HTML 4.01 Strict Yes 200 100 

8 HTML 4.01 Strict No 100 100 

9 XHTML + RDFa Yes 1 1 

10 XHTML + RDFa Yes 100 100 

11 XHTML + RDFa Yes 200 100 

12 XHTML + RDFa No 100 100 
TABLE 5: LINK EXTRACTION TEST RESULTS 



 Chapter 6: Results and Discussion 53 
 

 53 

Tests 3, 7 and 11 checked that the extraction mechanism obeyed the 100 links limit whereas 

tests 1, 2, 5, 6, 9 and 10 checked that the correct number of links could be extracted. Tests 4, 

8 and 12 checked how pages with invalid markup behaved. On these pages all link markup 

was valid but other parts were not and links were well distributed including in the head tags 

and outside the html tags. This shows that the extraction method was not strict about 

markup validity. In theory links outside the body should be ignored. Accepting invalidly 

positioned links in markup may make the spider susceptible to spamming. 

6.2.5: URL CACHE 

Most web pages contain links, and every link on the page represents a request to the URL 

cache therefore if the URL cache cannot rapidly check for duplicates it will cause the whole 

system to slow down. Some large crawls did actually cause the system to slow down 

drastically, as described in section 6.4.1. 

The basic Trie used for the URL cache had several potential performance enhancements 

available, comparisons were done to test which combination of enhancements performed 

best. Comparisons were also done between using the MFS distributed file system and storage 

on the local hard drives. Several tests were done for each configuration using different 

numbers of Trie entries (1000, 10000 and 100000); each entry was written and then checked.  

For each test the duration was measured in milliseconds. All tests were carried out on the 

machine on which the URL Cache was also running. The results are shown in Table 6 and 

Figure 13. 

The table notation is as follows: HDD indicates the test was run on the internal hard drive, 

MFS indicates that the test was run on the distributed file system. C means the C FILE*class 

was used for disk I/O and C++ means the std::fstream class was used. The presence of BCM 

shows that recent Trie Block Entries were cached in memory and finally NFL means that data 

streams were not flushed to disk immediately after a write and stream flushing was left to 

the discretion of the operating system. Note: NFL is only worth using with BCM as reading un-

cached data forces a flush which renders deliberately not flushing pointless. 
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Number of Trie Entries 

Test 1,000 10,000 100,000 

HDD C 260 3185 37105 

HDD C   BCM 175 2345 29912 

HDD C   BCM NFL 178 2352 30673 

HDD C++ 446 6114 75889 

HDD C++ BCM 155 2149 28004 

HDD C++ BCM NFL 158 2211 28140 

MFS C   6038 57511 810152 

MFS C   BCM 2201 26887 395676 

MFS C   BCM NFL 3686 44690 583140 

MFS C++ 2718 39309 432759 

MFS C++ BCM 710 8086 94279 

MFS C++ BCM NFL 724 8517 93132 

MFS Average 2680 30833 401523 

HDD Average 229 3059 38287 

Basic Average 2366 26530 338976 

BCM Average 810 9867 136968 

BCM NFL Average 1187 14443 183771 
TABLE 6: TRIE PERFORMANCE TEST RESULTS 

 

FIGURE 13: A GRAPH VISUALIZING THE TRIE PERFORMANCE TEST RESUTLS 

The Trie implementation rapidly seeks to different chunks of the file and this type of file 

access was noticeably faster, by at least 10 times on the local drive. Using MFS is a vast 

performance bottleneck, however using the local drive does not provide the mass storage 

and redundancy options. It is also interesting to note that C FILE* works faster on the local 

hard drive than the C++ std::fstream but on MFS it is the other way round. 
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Surprisingly, forcing the data streams to flush after block writes actually performed better 

than leaving it up to the operating system. It was expected that these results would be the 

other way round. The Trie also slowed down exponentially as more entries were added. This 

is expected as URL characters being represented as nodes become more spread out in the 

underlying file if it has a common prefix that was added much earlier, which increases seek 

distance and time. 

6.3: INDEXING ACCURACY 

The indexing accuracy tests measure how many pages the crawler discovers from a known 

set and how many Triples it finds from a known amount. A program was made specifically for 

this test which generates webpages with content that includes triples. The program takes a 

number of levels deep to make the website, and the number of pages to create at each level. 

The number of triples on each page can also be specified. Four main sets of tests were done; 

each had a different number of triples per page, from 0 to 3. Then for each main set 5 sites 

were generated each with different numbers of pages. The results are in Table 7.  

 Pages Generated Triples Generated Pages Found Triples Found 

1 2 0 2 0 

2 8 0 8 0 

3 40 0 40 0 

4 341 0 341 0 

5 3906 0 3906 0 

6 2 2 2 2 

7 7 7 8 8 

8 40 40 40 40 

9 341 341 341 341 

10 3906 3906 3906 3906 

11 2 8 2 8 

12 7 14 8 16 

13 40 80 40 80 

14 341 682 341 682 

15 3906 7812 3906 7812 

16 2 6 2 6 

17 7 21 8 24 

18 40 120 40 120 

19 341 1023 341 1023 

20 3906 11718 3906 11718 
TABLE 7: SPIDER ACCURACY TEST RESULTS 

The Spider successfully managed to find all pages and triples on the test sites. It was given a 

progression regular expression to make sure that it did not crawl outside of the evaluation 

website being tested at the time. The depth racing issue (discussed later) did not occur 

because the initial crawl depth was set much higher than the actual overall depth of the site. 

Every time a new site was tested the Sesame Triple Store’s repository had to be emptied so 

that the number of triples on the next site could be counted. Unfortunately, after a few of the 



 Chapter 6: Results and Discussion 56 
 

 56 

tests Sesame was unable to fully empty all the triples which required the Tomcat Server to be 

stopped and the repository manually deleted. 

6.4: SCALABILITY 

6.4.1: SCALABILITY, SPEED AND OVERALL PERFORMANCE 

A requirement of the Spider was that it should be scalable and efficient so that hopefully it 

can crawl as quickly as environmental conditions permit (such as internet connection speed). 

Table 8 shows the results of several test crawls, all starting from the University of Sheffield’s 

website (http://www.sheffield.ac.uk). Tests were done using different numbers of nodes 

(servers), different crawl depths (which roughly governed the size of the crawl) and the URL 

Caching method. The duration is in seconds and the rate is pages per second. 

 Depth Nodes URL Cache  Duration Triples  Pages  Rate Data D’loaded 

1 5 23 MFS Trie 2558 47158 193618 76 20GB 

2 5 23 HDD Trie 2140 73061 259008 121 30GB 

3 6 23 MFS Trie STOPPED DUE TO SLOW SPEED 

4 6 23 HDD Trie 12214 301219 1832157 150 150GB 
TABLE 8: SPIDER PERFORMANCE RESULTS 

All crawls slow down towards the end because URLs are rapidly being requested but few are 

coming in so the Insert/To Do Server uses time to try and maintain diversity but struggles, and 

there are few if any new URLs to pad out common ones. In theory a larger crawl may not 

suffer from this problem because more sites should be discovered which may assist in 

maintaining the diversity of the URLs being sent to crawlers. 

Crawl 1 ran noticeably slower than crawl 2 and this is simply down to using MFS as the 

storage system for the URL Cache. As demonstrated in section 6.2.5 the Trie structure used in 

the URL Cache performs poorly on MFS. Crawl number was stopped soon after it was started 

because it slowed down to a rate of 4 pages per second. This is because the URL Cache’s Trie 

was taking a long time to process queries. Due to the crawl being deeper the URL Cache grew 

more rapidly it required disk seeks over greater distances and MFS does not cope well with 

this situation. As crawl number 4 shows, when using the Hard Drive for the URL Cache’s Trie 

storage the crawl was fast. 

It is also interesting to note that the number of pages crawled and triples found on crawls of 

the same depth differ, this is discussed in the next section. 

6.4.2: STOPPING AND DEPTH RACING 

In the Spider’s implementation, depth was used as a stopping condition which produced a 

side-effect which should have been expected; the number of pages found in crawls with 

identical starting parameters could differ greatly. It is a form of race condition where the 

order in which the pages are crawled affects the number crawled in total. To illustrate a 

simple hierarchy will be used to represent a crawl of depth 2. Figure 14 shows the crawl 

finding 8 pages and Figure 15 shows the same crawl finding only 3 pages because they were 

crawled and discovered in a different order. 
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Each node in the diagram represents a page and the crawl always starts with the node at the 

top (node number 1). The number in the middle represents the depth at which the page was 

discovered and the number on the arrow is the order the discoveries were made. The 

number adjacent to each node is to identify them for easy reference in the explanations. 
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FIGURE 14: CRAWL PROGRESSION IN DEPTH RACING 
SCENARIO 1 

FIGURE 15: CRAWL PROGRESSION IN DEPTH RACING 
SCENARIO 2 

 
In Figure 14 the first node discovered from the start (node 1) is node 3 which is given a depth 

of 1, then node 2 is discovered. Node 2 then finds node 3 but as it already has a depth of 1 it 

is not overwritten by 0 as the URL cache already knows of this page and won’t add it to the 

URL Queue again. Finally node 3 discovers nodes 4-8 and as they are at depth 0 no further 

attempts are made to discover if they lead anywhere. 

In Figure 15 the first node discovered from the start (node 1) is node 2 which is given a depth 

of 1. Node 2 then finds node 3 and gives it a depth of 0. Node 1 also finds node 3 afterwards 

but does not reassign it a depth of 1 as it already has a depth of 0 and the URL cache will 

prevent it from being re-queued with a different depth. This means that nodes 4-8 are never 

discovered. 

The example here would never occur because of the small number of pages, but when the 

URL Queue becomes large and multiple multi-threaded crawlers are used then this race 

condition does occur. This is due to external delays affecting the order in which URLs finish 

being crawled and new URLs are sent to the queue which then alters the result of the 

diversity calculations which changes the order in which subsequent URLs are crawled. Any 

stopping condition may cause this, be it depth, total pages crawled or even until a specific 

page was found. 
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CHAPTER 7: CONCLUSIONS 

7.1: OVERVIEW 

Crawling the web is non-trivial and intricate task. There are scores of potential bottlenecks as 

the components of a scalable system are very tightly coupled. During development every 

time one fix was applied to a slower component the whole system sped up, however it often 

exposed another bottleneck or a coding error. Crawling also requires lots of care and 

responsibility as a crawler will potentially access hundreds of pages per second and if the 

order in which URLs are crawled in is not carefully controlled it could cause websites to be 

over-crawled and crash denying access to legitimate users. 

The crawler’s performance was slightly disappointing at times when using the MooseFS 

distributed file system as the storage method however this was easily combatted by using 

storage on local drives. 

Extracting only directly specified RDFa elements can be problematic because some of the 

better RDFa parsers also export implicit RDFa such as bookmarks and style sheets. A totally 

compliant parser can be difficult and time consuming to create and until more customization 

is available a layer between exporting and storing to filter the data is needed. 

7.2: PROGRESS 

Though a basic working crawler had been created before the Survey and Analysis it was 

completely re-written in the last three months. The decision to rewrite it all was made 

because a lot of the code was not very generic or transferrable between internal applications 

which meant that creating most of the services was very time consuming. The newer version 

of the crawler uses language features to make the code more efficient and generic. The 

project progress is informally documented at http://www.rdfas.com/blog. 

7.3: FUTURE IMPROVEMENTS 

There are several elements of the Spider system which could have been implemented better, 

or implemented in the first place to improve accuracy and/or performance. 

7.3.1: URL CACHE 

The overall performance of the URL Cache (Trie) was disappointing, the high level of seeks 

meant that (on MFS at least) the performance was very poor. Further work and research 

needs to be done on storing some sort of index on a file system. It may be worth considering 

the technique used in the URL Queue where temporary data are processed and stored in 

chunks so major data shifting is committed in memory and not on disk. 

7.3.2: DNS CACHING AND PREFETCHING 

Every time a page was requested from a web server, the Download File class first had to 

resolve the domain name of the site to an IP address. This places a lot of load on local and 

upstream DNS servers. Many DNS servers will cache lookups that they cannot authoritatively 

respond to, which will help reduce load, however by design each Download File instance on 
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each thread will make DNS requests even if another thread in that process has already 

resolved the domain in question, caching DNS results at the crawler level will help minimize 

requests to the local DNS server. Furthermore the URL Queue knows what domains are going 

to be crawled in the near future and it could instruct crawlers to asynchronously look up in 

advance (pre-fetch) the domain names to minimize resolution delays when the time comes to 

crawl a page on that domain.  

7.3.3: DISTRIBUTED LOCKING 

Locking is commonly used to ensure that resources are only accessed or modified by one 

process at a time. Distributed locking would mean that all the crawlers could secure shared 

access to resources like the cache or the queue without the need of a cache server or queue 

server which would then mean that these single purpose servers are no longer a potential 

point of failure. Removing specific servers in place of shared access to resources also reduces 

the overhead on a specific server as it would distribute the workload but may imply the need 

for shared resources such as a file system. 

7.3.4: TRIPLE FILTERING 

Some Triples extracted by the parser pyRDFa were related to style elements of the page, 

most commonly the style sheet. These were not explicitly declared through namespace 

declarations but implied by the HTML tags that link to the style sheet. As all Triples were sent 

to the Triple Store it means the total count of Triples showed specifically written Triples as 

well as the implicit style Triples which gives a false representation of how many Triples have 

been created and found. A potential solution would be to parse the Triples after they have 

been extracted from a page, but before they are sent to the Triple Store and remove any that 

match certain patterns. 

7.4: FURTHER WORK 

7.4.1: TREE STORAGE 

Trees can be a very efficient method for storing data, especially hierarchical data and most of 

the web is a massive interlinked hierarchy. Domains, folders and HTML pages all follow a 

hierarchical structure and thus spiders (amongst other things) can make great use of trees. 

Unfortunately trees perform poorly when stored on sequential storage with large (compared 

to memory) and variable seek delays. Disk caching does improve access to blocks of data 

which are near each other however when related data is sparsely separated seek times can 

make access slow. When trees are stored in memory seek time and access is extremely fast 

and not that variable meaning trees can perform very well. 

As many data structures can become very large when populated it is often not possible to 

store it all in memory. Unfortunately there seems to be minimal published research on 

efficient algorithms for storing tree structures on disk based (or persistent) storage 

mechanisms. With solid state drives (SSDs) slowly becoming quite popular this research may 

not eventually be needed but they are currently still very expensive compared to traditional 

magnetic disk based hard drives. 

7.4.2: DISTRIBUTED FILE SYSTEMS 
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In applications where lots of data needs to be processed and/or stored they are likely to 

require more space than is currently available on a single physical disk. Many solutions that 

are currently commercially available still have the risk of a single point of failure when being 

accessed by several clients and it is most often the host machine which connects the storage 

to the clients. Distributed file systems avoid this common point of failure as data is replicated 

amongst many nodes and in many cases master nodes, which would otherwise be a point of 

failure, can have secondary backups ready to take over in the event of a failure.  

There are several implementations of distributed file systems, many of which are open 

source. Unfortunately they are often poorly documented and overly complicated to setup or 

restrictive when it comes to interacting with them. Work on more openly documented and 

flexible distributed file systems would be a positive step forwards. 

7.4.3: SCALABLE TRIPLE STORES 

Though there are several Triple Stores available, only one (4Store) seems to be designed to 

cope with a high level of scalability and actually describes the ability to have multiple storage 

nodes in its documentation. Unfortunately it is suggested that these storage nodes are 

powerful, resource rich servers. Though Triple Stores have a query language which vaguely 

resembles SQL’s query language it is often claimed that an SQL style database engine does 

not make an ideal backend for Triple Stores even though many are implemented on top of a 

common database engine like MySQL. Many powerful database engines have now emerged; 

given time and increased industry use more research and powerful solutions for Triple Stores 

may also emerge. For projects like this one to succeed a very reliable Triple Store would be 

useful as Sesame suffered a few problems (as noted in section 6.3). 

7.4.4: OPEN SPIDER RESEARCH 

While writing this paper it has become very clear that there is little in-depth published 

research about the detailed mechanisms involved in making a Spider. This is almost certainly 

because any successful attempts could potentially be used for commercial gain, however at 

this point that is questionable as the search engine market is very much saturated and 

dominated by a handful of companies. Techniques used to make large scale crawlers are very 

transferrable and constitute interesting and valuable areas of research, for example storing 

large volumes of data, efficient forward and reverse indexes and storing complex data 

structures on a file system. It would be desirable to see more research published on these 

and related subjects in the future and carrying on the work presented here would be a good 

start. 



 References 61 
 

 61 

REFERENCES 
AC & NC (2009) Raid Levels, 1 Jan, [Online]. AC & NC. 

http://www.raid.com/04_01_0_1.html [Accessed 21 Nov 2009]. 

Alexa (2009) Top Sites, 11 18, [Online]. Alexa. 

http://www.alexa.com/topsites [Accessed 11 18 2009]. 

Berners-Lee, T. (2005) RFC3986: Uniform Resource Identifier (URI): Generic Syntax, [Online].. 

http://www.ietf.org/rfc/rfc3986.txt [Accessed 14 Apr 2010]. 

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine, 

Standford University. 

Broadband.org (2009) Fastest Broadband Speeds - Top 3 Speeds, 1 November, [Online]. 

Broadband.org. 

http://www.broadband.org/fastest_broadband.html [Accessed 25 November 2009]. 

Cafarella, M. and Cutting, D. (2004) Building Nutch: Open Source Search, 2, (2), Available: 

1542-7730. 

Cody, D. (2001) Using Apache to stop bad Robots, 22 Aug, [Online]. Evolt.org. 

http://evolt.org/article/Using_Apache_to_stop_bad_robots/18/15126/ [Accessed 25 Nov 

2009]. 

Dean, J. (2008) Jeff Dean on Google Infrastructure, 11 Jul, [Online]. Perspectives. 

http://perspectives.mvdirona.com/CommentView,guid,dd99224c-5fe4-4b4b-80fe-

0600e9633429.aspx [Accessed 10 Nov 2009]. 

Fielding, R., Irvine, U., Gettys, J., Compaq, Mogul, J., Frystyk, H., MIT, Masinter, Xerox, Leach, 

P., Microsoft and Berners-Lee, T. (1999) RFC2616 Hypertext Transfer Protocol -- HTTP/1.1, 

[Online].. 

http://www.ietf.org/rfc/rfc2616.txt [Accessed 14 Apr 2010]. 

Fielding, R., Irvine, U., Gettys, J., Compaq, Mogul, J., Frystyk, H., MIT, Masinter, Xerox, Leach, 

P., Microsoft and Berners-Lee, T. (1999) RFC2616 Hypertext Transfer Protocol -- HTTP/1.1, 

[Online].. 

http://www.ietf.org/rfc/rfc2616.txt [Accessed 10 April 2010]. 

Ghemawat, S., Gobioff, H. and Leung, S.-T. (2003) The Google File System, ACM. 

Goodrich, M.T. and Ramassia, R. (2004) Data Structures and Algorithms in Java, in Goodrich, 

M.T. and Ramassia, R. Data Structures and Algorithms in Java, Wiley. 

Google (2008) We knew the web was big, 25 Jul, [Online]. The Official Google Blog. 

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html [Accessed 18 Nov 

2009]. 

http://www.raid.com/04_01_0_1.html
http://www.alexa.com/topsites
http://www.ietf.org/rfc/rfc3986.txt
http://www.broadband.org/fastest_broadband.html
http://evolt.org/article/Using_Apache_to_stop_bad_robots/18/15126/
http://perspectives.mvdirona.com/CommentView,guid,dd99224c-5fe4-4b4b-80fe-0600e9633429.aspx
http://perspectives.mvdirona.com/CommentView,guid,dd99224c-5fe4-4b4b-80fe-0600e9633429.aspx
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html


 References 62 
 

 62 

Internet Archive (2009) PetaBox, 20 Nov, [Online]. Internet Archive. 

http://www.archive.org/web/petabox.php [Accessed 20 Nov 2009]. 

Internet World Stats (2009) Internet Usage Statistics, 18 Nov, [Online]. Internet World Stats. 

http://www.internetworldstats.com/stats.htm [Accessed 18 Nov 2009]. 

iProspect (2006) iProspect Search Engine Behaviour Study, April, [Online]. iProspect. 

http://www.iprospect.com/premiumPDFs/WhitePaper_2006_SearchEngineUserBehavior.pdf 

[Accessed 15 April 2010]. 

Jack Rusher Triple store, [Online]. W3. 

http://www.w3.org/2001/sw/Europe/events/20031113-storage/positions/rusher.html 

[Accessed 26 Nov 2009]. 

Lardinois, F. (2009) Google Patents Its Homepage, 2 Sep, [Online]. ReadWriteWeb. 

http://www.readwriteweb.com/archives/google_patents_its_homepage.php [Accessed 20 

Nov 2009]. 

Majestic-12 (2009) Majestic SEO, 18 Nov, [Online]. Majestic SEO. 

http://www.majesticseo.com/ [Accessed 18 Nov 2009]. 

Matthew Komorowski (2009) A History of Storage Cost, 01 July, [Online]. mkomo.com. 

http://www.mkomo.com/cost-per-gigabyte [Accessed 12 March 2010]. 

Mono Project (2010) Mono: getting started, [Online]. Mono. 

http://www.mono-project.com/Start [Accessed 10 April 2010]. 

Network Working Group (1998) RFC2460, 1 Dec, [Online]. IETF Tools. 

http://tools.ietf.org/html/rfc2460 [Accessed 20 Nov 2009]. 

Network Working Group (1999) Hypertext Transfer Protocol -- HTTP/1.1, 1 May, [Online]. 

IETF. 

http://tools.ietf.org/html/rfc2616 [Accessed 22 Nov 2009]. 

Pages, T.W.R. (1994) A Standard for Robot Exclusion, 1 May, [Online]. The Web Robots Pages. 

http://www.robotstxt.org/orig.html [Accessed 25 Nov 2009]. 

RDFa (2010) Consume, 14 April, [Online]. RDFaWiki. 

http://rdfa.info/wiki/Consume [Accessed 17 April 2010]. 

W3C (2004) RDF Primer, 10 Feb, [Online]. W3C. 

http://www.w3.org/TR/rdf-primer/ [Accessed 20 Nov 2009]. 

W3C (2008) RDFa Primer, 14 Oct, [Online]. W3C. 

http://www.w3.org/TR/xhtml-rdfa-primer/ [Accessed 19 Nov 2009]. 

W3C (2010) RDFa Distiller and Parser, 9 March, [Online]. W3C. 

http://www.w3.org/2007/08/pyRdfa/ [Accessed 16 April 2010]. 

http://www.archive.org/web/petabox.php
http://www.internetworldstats.com/stats.htm
http://www.iprospect.com/premiumPDFs/WhitePaper_2006_SearchEngineUserBehavior.pdf
http://www.w3.org/2001/sw/Europe/events/20031113-storage/positions/rusher.html
http://www.readwriteweb.com/archives/google_patents_its_homepage.php
http://www.majesticseo.com/
http://www.mkomo.com/cost-per-gigabyte
http://www.mono-project.com/Start
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc2616
http://www.robotstxt.org/orig.html
http://rdfa.info/wiki/Consume
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/2007/08/pyRdfa/


 References 63 
 

 63 

Wikipedia (2009) Meta Element, 14 Nov, [Online]. Wikipedia. 

http://en.wikipedia.org/wiki/Meta_element#The_robots_attribute [Accessed 25 Nov 2009]. 

Wikipedia (2009) Robots exclusion standard, 12 Nov, [Online]. Wikipedia. 

http://en.wikipedia.org/wiki/Robots_Exclusion_Standard [Accessed 23 Nov 2009]. 

Wikipedia (2010) Hypertext Transfer Protocol, 14 April, [Online]. Wikipedia. 

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol [Accessed 15 April 2010]. 

Wikipedia (2010) URL Normalization, 1 April, [Online]. Wikipedia. 

http://en.wikipedia.org/wiki/URL_normalization [Accessed 1 April 2010]. 

Wikipedia (2010) Web Crawlers, 19 April, [Online]. Wikipedia. 

http://en.wikipedia.org/wiki/Web_crawler [Accessed 20 April 2010]. 

  

http://en.wikipedia.org/wiki/Meta_element#The_robots_attribute
http://en.wikipedia.org/wiki/Robots_Exclusion_Standard
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/URL_normalization
http://en.wikipedia.org/wiki/Web_crawler


 Appendices 64 
 

 64 

APPENDICES 
APPENDIX A: RDFAS CLUSTER DEPLOYED IN THE DCS SERVER ROOM 

   
 

APPENDIX B: CLUSTER SPECIFICATIONS 

Node CPU RAM Hard Disk Roles 

1 2.4 GHz P4 1 GB 80 GB Crawler, MFS Node 

2 2.4 GHz P4 256 MB 80 GB Crawler, MFS Node 

3 2.4 GHz P4 256 MB 80 GB Crawler, MFS Node 

4 2.4 GHz P4 256 MB 80 GB Crawler, MFS Node 

5 2.4 GHz P4 512 MB 80 GB Crawler, MFS Node 

6 2.4 GHz P4 256 MB 6 GB Crawler, MFS Node 

7 2.4 GHz P4 256 MB 80 GB Crawler, MFS Node 

8 2.4 GHz P4 512 MB 80 GB Crawler, MFS Node 

9 2.4 GHz P4 512 MB 80 GB Crawler, MFS Node 

10 2.4 GHz P4 512 MB 80 GB Crawler, MFS Node 

11 2.4 GHz P4 512 MB 80 GB Crawler, MFS Node 

12 2.4 GHz P4 512 MB 80 GB Crawler, MFS Node 

13 2.4 GHz P4 256 MB 80 GB Crawler, MFS Node 

14 2.4 GHz P4 512 MB 10 GB Crawler, MFS Node 

15 2.4 GHz P4 256 MB 80 GB Crawler, MFS Node 

16 2.4 GHz P4 512 MB 80 GB Crawler, MFS Node 

17 2.4 GHz P4 512 MB 80 GB Crawler, MFS Node 

18 2.4 GHz P4 512 MB 80 GB Crawler, MFS Node 

19 2.4 GHz P4 768 GB 80 GB Crawler, MFS Node 

20 2.4 GHz P4 1 GB 80 GB Crawler, MFS Node 

21 2.4 GHz P4 1 GB 80 GB Robot Server, MySQL, Crawler, MFS Node 

22 2.4 GHz P4 256 MB 80 GB Crawler, MFS Node 

23 2 x 2 GHz Xeon 2 GB 20 GB ITD Server, Power Cache, Sesame, 
Crawler, MFS Master 

“router” 1GHz P3 1 GB 20 GB Router, Setting Server, Log Server, DNS 

Total: 57.8 GHz 13.75 GB 1.6 TB  
 


