COM3021 - RDFA WEB SPIDER

RDFaS

x

®
® l
""".«.

o L
http://www.rdfas.com
Title: RDFa Web Spider
Name: Paul Ridgway
Supervisor: Fabio Ciravegna
Module Code: COM3021
Date: 5™ May 2010

This report is submitted in partial fulfilment of the requirement for the degree of Master of
Software Engineering in Computer Science by Paul Ridgway.

SIGNED DECLARATION

All sentences or passages quoted in this dissertation from other people's work have been
specifically acknowledged by clear cross-referencing to author, work and page(s). Any
illustrations which are not the work of the author of this dissertation have been used with the
explicit permission of the originator (where possible) and are specifically acknowledged. |
understand that failure to do this amounts to plagiarism and will be considered grounds for
failure in this dissertation and the degree examination as a whole.

Name: Paul Ridgway

Signature:

Date: 5" May 2010

ABSTRACT

Current web 'standards' formalize formatting and provision of information on the Web, but
little of this information can be put into context by a machine without heavy analysis. A
proposed XHTML extension called RDFa allows the content creator to specify the type of data
on a web page which implies or specifies the context and relationship of this data. This allows
automated processes to potentially discern the meaning of the information. There are many
search engines for several different types of media, but most commonly they allow the user
to search content on the Web, return results based on a relevance match which is often done
by the frequency in which the search term appears in the document. The aim of this project is
to index pages which contain RDFa data for searching, tackling issues involved with and
providing more research crawling and indexing large numbers of pages and enormous
amounts of data.

ACKNOWLEDGEMENTS

Most importantly | would like to thank Fabio Ciravegna, my supervisor, for finding a home for
my 24 servers, giving me advice on sematic web-related issues and guiding me through the
structure of the report. | would also like to thank:

The DCS Support Staff

Specifically Dave Abbott for agreeing house my servers in the DCS Server
room and Chris Stoddart for allowing me access to the servers when things
needed fixing.

Amanda Taylor

My girlfriend, for putting up with my constant rambling about memory leaks,
data structures, network protocols, efficiency and all the other strange issues
that had to be dealt with during the project.

James Gilbert, David Gill and Daniel Hough

My Housemates, for providing a constant source of distraction when writing
got tiresome.

CONTENTS
YT Yo l B LTol - =Y o o [PPSR i
LY o153 1 - T T TSP PP TR TSRS PRPPPOPN iii
ACKNOWIBAZEMENTS ... e e e e e e e e e et tr e e e e e e e s s nntteeeeeeeeeesnnrreneaaanas iv
CONTENES e e e s e e s e e e e e e e v
FIGUIES ettt ettt ettt e e e e e s sttt e e e e e e e s bt be e e e e e e e e b tbae e e e e e e e anbeteeeeeeeeannraes viii
TADIES ettt ettt b e b e sree st sane e re e viii
AN o 01T g o [ol TSP iX
(G Lo 1YY= TSRS X
(@0 =Y o) =Y g A 0 o Yo ¥ ot T o USSR 1
Chapter 2: LItErature REVIEWuuiiiiciiie ettt ettt sttt et e e st e e s svee e e s sbaeeessbaeeessnseeeasans 2
2.1: The Structure of the World Wide Webcccoevieiiiiienieieeeeeeeee e 2
2.0.1: ThE INEEINET et 2
2.0.2: TRE WD ettt ettt b e s s s r e e ae e 2
2.2: ACCESSING TNE WED oo e e e e e s ea e e e e e s 3
2.2.0: ACCESSING PagES. i 3
2.2.2 SIZE ettt ettt e s e et e e et e e e —rta e e e e e e e a b bt aaeeeessea st braaaeeeeeeearrraees 7
R Y=Y [ol o T X =T o 1= S 10
B T N Lol V=] o T [W elo) ¢ (=) PR 10
2.3.1: Searching Content vs. CONtEXLt......ccccuiiiieiiiiiiciiiieee e e srre e e e e e e e 10
T A Y D o [To I {5 o PR UPRR 10
2.3.3: Parsing RDFa and Storing RDF Datacccuvieiiciiiieiiiiie st esieeeesiieee e e e 11
2.4: Crawling and INAEXINEcciciiieiiiieie e ccieee ettt ree e et e e sree e s s sabe e e e s sabeeesenreeeesanees 11
2.4.1: Basic Crawler and INEXET......c..ueiviriiriieeiieniente sttt 12
2.4.2: POIILENESS «..eeiiieiteecee ettt et st s e e e e sreeea 12
2.4.3: DAta SEFUCTUIES...coo ittt s 14
B S ¥ T oo AV o | d I PP 14
T (o1 - 1 -{ - OO P PSP PPPPPTPPPPPPPP 15
2.4.6: 0verall PErformManCecceeieerierieiieeieeeesiee et e 15
2.5: Distributed COMPULING......cuiiiiiiiee ettt et e e e e eree e s e nrae e e eanes 16
Chapter 3: Requirements and ANAlYSiS......ccuuiiiiiiei i e e e arrrree e e 17
3.0 OVErAll STIUCTUIE ..ottt ettt et st e e sab e s b e e be e e sareessneeesaneas 17
I I T @ - 1V 1o V= SRR 17
I 0 [Yo L= o V- PR 17

Vi

3.1.3: Scalability and SPEEAuviiiiieee e e 17
K - 111V | ' = S UURER 17
I T I = Tol 41 Y= I SRR 17
3.2.2: QUEUE URLS t0 Crawl ..cccueiiiiiieiieeiecee ettt e 18
I T = - o = o To | 1 ISR 18
3.2.4: DOWNIOAAING @ PABE..uiiiiciiiie ittt ettt ettt e et e e st e e e s ar e e e e b e e e e asaee e ennaee s 18
BT o =T 1 V= T | S 18
3.2.6: Check for DUPHICAtES oo e e e e 19
3.2.7: QUEUE fOr INAEXING ..vveeiiiiiieieiiie ettt s e e s e e s abae e s ennaee s 19
3.2.8: Deciding When t0 SEOP «oovvviiiiiiiie ettt e 19
I R T Lo (T =4 2 { B - USRS 19
3.4: Storing RDF and RDFA content — Triple STOre........coocvveeeiciiee et 19
3.4.1: Data Input, Output and QUETIESc.euvviieeieeiiccirieeee e e e e e e 20
R Yot | =1 o111 4V 2SRRI 20
35,1 HArAWAIE «eeeeieiiieiee ettt ettt ettt ettt e s bt e sat e st e s bee e sabeesbeeesneeesabeeesabeesaneeeas 20
3.5.2: STONNG DAta ottt e e e e st e e e e e e e nnnees 20
T TR Y o 1T =T PR 21
361 EVAlUGTION. .ot 21
(00 F=Y o =Y g S D TSIy - o SR 22
4.1 OVEIVIEW ceiiieiieeiiiteee ettt e ettt e sttt e e st e e e st e e s st e e s amre e e e samneeeesamneeeesamreeeesanreneesannaneesans 22
4.1.1: Unity: Crawling and Indexing togethercvivciieiiiiiiiieceec e 22
A2 LANEUAEE «.evevereeerettteteretetereeerereeeaeeeeaee e seeaaeeeeeeeeeee et e e e et ettt ettt et ettt ettt ettt e bate bt bannbebenenen 23
R D | = BN Ko] - 1= TP PP PSP P PO PPROPPRORPRPRPRPRPPORt 23
A.3.15 RAID ..ttt et b e s he e he e sttt e et e e bt e e bt e saeesaeeeanes 23
4.3.2: Basic Network Attached StOrageooocceiiieiee i 24
4.3.3: High Performance Network Attached Storagecccccceeeeeciiiiieeee e 24
4.3.4: Distributed File SYStEMSuiiiiiiiie ettt e ree e e 25
4.3.5: CONCIUSION ...ttt sttt st st e bt e b e saeesmeesanes 26
Yot F=1 11 oY 2 UUPPR 26
4.4.1: Threading, synchronicity and Asynchronous [0ccccceveeiiiirieeeeeesccciiieeee e eeenns 26
4.4.2: Communication between ApplicationsS........eeeeiiecciiiiiiiii e 26
T U (I =T o 1P 27
4.6: URL QUEUE ...ceeviiiiiiiiiiiiiiettttteeeteeeseteeeeeeeaeeesaeesaseeesaessesesssesasesssesssssasssssssssssssssssssssssnsnsssenes 33
4.7: RODOTS CACNE ..ottt ettt sttt et sbe e s s e ne e 37

Vi

vii

T O = 1V =T U T P SUPTUPRO PP PR 38
4.8.1: Request URL L0 CraWl ..ccciiiieiiieeee ettt e e e ettt e e e s e e e e nratae e e e e e e eeanns 38
4.8.2: DOWNIOAA PAGE ..ueeviiieiee ettt e e e e e e e e e e e e et e e e e e e e nnrataeeaeeeeeaanns 38
4.8.31 EXEFAC lINKS ..eeiiiieieeeiee ettt ettt et 39
4.8.4: Checking for dUpliCates.......uuiiiciieieciiic e 39
4.8.5: QUEUE UNIQUE URLS...cuitiiiiiiiriiiiiiiieeirtttteteeerereeeseeeeeeeeeeeeereeeseseseserererer—————————————————. 39

e T [T 1= 4 o V- U PUPPR 40
e Tt I W T o LI o T USSP 40
4.9.2: Parse RDFQ ..ccooiiiiiiiiiiiii ettt 40
4.9.3: SEOMNG RDF ..ottt ettt e e e e e sttt e e e e e s s arabaeeeeeeeenanns 41

Chapter 5: Implementation and TeSTINGuviiiciiie i e e e e e s eaaaee s 42

oI I 14T o] (=T g T=T o =Y o] o F USRS 42
5.1.0: OVEIVIEW ittt sttt ae e s srba e s s aba e e s sirae s 42
oI A W o T =TSO UOPSPOPRTRVRRTR 42
LT R T Yo o] [Tor= Y 4 o o TR 47
I T (o] - T -{ - U PTRT PP 48

D2 TS NG it 49

Chapter 6: ReSUItS and DIiSCUSSION ...uvviiiiiieiciiiiieeee e eeeciiree e e e e e eesvrrre e e e e e s e ssaarereeeeessesnaansenneeeees 50

6.1: Hardware and INfrastrUCtUreooieeiiiieiie e 50

B.21 CrAWIBI . ettt ettt sttt e sa e s b e s he e e s b et e en e e e s r e e e be e e s reeeneeesareas 50
5.2.1: URL QUUEUE ..ottt ettt st sttt et ettt sb e b et e saeesaaesateenbeesbeesanesasesanas 50
5.2.2: POIILENESS .ot 51
6.2.3: DOWNIOAAING PAZES ...uiiiiiiiiieiciiieeecieee et te et e e etr e e e eata e e s aar e e e eaaaeeeenbaeeeennaeeas 51
I N - Tor [o T I] PR 52
5.2.5: URL CACRE ...ttt sttt sttt e sb e st e st 53

6.3 INAEXING ACCUIACY ..vvriiieieeeeiciiitieeeeeeeeeeccttteeeeeeeseesisbateeeeaeessasststaereeeesesassstaneeaeasessansnsenns 55

L Yot F=1 o 11 1 A PSPPI 56
6.4.1: Scalability, speed and overall performance........ccccccveeevciiieecciiie e, 56
6.4.2: Stopping and Depth RACING.....cccieiiiiiiiiiiee e e 56

(00 =Y o) =Y g o] o Vol [0 1] o T 13 PR 58

7.0 OVEIVIEW ..ttt ettt e sttt e e st e e sttt e e s mr e e s s me e e e s smre e e s s mee e e s emreeesenreeesannnes 58

72 PO S ittt e e e et et e e e e e eeeaeeeeees 58

7.3: FUTUIE IMPrOVEMENTS i e e e e e e e e e e e e e e e e e e 58
7.3. 11 URL CACRE .ttt st st st e b e s s 58

Vii

viii

7.3.2: DNS caching and PrefetChing ...t 58
7.3.3: Distributed LOCKING ..oeeeiiiieeee e e e e e e 59
2 T S N a1 L= 1 =T T V- 59
T4 FUMNEI WOTK ettt ettt ettt s e et e st e s be e e sabeeeneeesaneas 59
74,0 T STOMAGE i e e e e e e 59
7.4.2: Distributed file SYStEMS.....uiii i 59
A T YoF: | =1 o [W o] T oL =TS 60
A N T o 1T I o] o [T gl £ oY== ol o SRR 60
RETEIENCES ..ottt et ettt e b et e st e st e e sab e e s bt e s bt e e sabeeeneeesabeesabeeesareesareeaas 61
AN oY T=T oo Lol PSR 64
FIGURES

Figure 1: A graph of the effective cost per gb of hard drive storage against time (Matther Komorowski,
2009). PErmMIiSSION @QUITET. ...veieiureeeiieeiieeeeeesteeeteesteesteesteesaeeseteesseesareeaseessseesnseessseesseesnsaesnseesnes 9

Figure 2: An overview of the spiders architechture and interactions
Figure 3: A visual representation of a trie From Wikipedia, public domain and can be used for any

U o Yo OSSR 29
Figure 4: A tree showing several domains as a hierarchycccocvvvivciee e, 29
Figure 5: A tree showing several folders as a hierarchycccocoviiiiiie e 29
Figure 6: Several URLs shown as a full hierarchy with reversed domains.........ccccceevcveeeivcieeeeciee e, 31
Figure 7: Four URLS Shown as Stored in @ TriE......ccccuiiiiiiiieeeiie ettt ettt e et e et e e e 33
Figure 8: Progressive steps showing how four URLs would be stored in a Trie data structure............... 33
Figure 9: Progressive steps showing how four URLs would be stored in an XTrie data structure. 36
Figure 10: Steps showing how URLs are queued and extracted from an XTrie........ccocevevcvveeeecneeevenneen. 36
Figure 11: Further steps show how URLs are queued and extracted from an XTrie........ccccceeeecveeeennnenn. 37
Figure 12: The implemented architecture of the SPIder ... vecier i 42
Figure 13: A graph visualizing the Trie performance test resutlscccceeeeiiieeeiiiiiicciiee e, 54
Figure 14: Crawl progression in depth racing SCENArio L......cccvvivecieeiriiee e e 57
Figure 15: Crawl progression in depth racing SCENAIIo 2......ccuuiiiciuiieeiiieee ettt et 57
TABLES
Table 1: RAID I8VEl COMPAISIONS ...cccciiiiiiiieee et e et e etee e e st e e e eate e e stteeeesataeesessaeessaaeeesstaeeeansresesnssenas 24
Table 2: URL QUEUE tESE FESUILS ...eviieiiiiiiiiieeiiieeeceitee e stte e et e st e st e e st e e s sare e s saaeeeessbaeesnnnreeesnnseens 50
Table 3: RODOtS PArser tEST FESUILSeiiiciiiie e ceiee ettt e et e e et e e e e at e e e ssteeeesataeeeensreeesnseeas 51
Table 4: Download File €lass teSt rESUILSccouiiii i 52
Table 5: Link eXtraction teSt rESUILS......civuiiiiiiiieiieere sttt sbe e saae e s be e sane e sabeesanee s 52
Table 6: Trie performance teST FESUILSooiiiiiiiiiieee e st s 54
Table 7: Spider aCCUracy tEST MESUILSccicuiieeciiiee ettt e e et e e e et e e e e tba e e e s ataeeeensreeeenneeas 55
Table 8: Spider performance rESUILSoiiiiiiie et s s e s s 56

viii

APPENDICES

Appendix A: RDFaS Cluster deployed in the DCS Server ROOMccocueiiiieriieeenieeniee et seee e

Appendix B: Cluster specifications

GLOSSARY

AJAX
Asynchronous JavaScript and XML — a group of related web development
technologies used in creating interactive client-side applications.

CALL BACK
A reference to a piece of executable code that is passed as an argument to other
code.

CHECKSUM
A fixed size ‘signature’ computed for some data for detecting accidental errors
potentially introduced during its transmission.

CRAWLING
Crawling the Web is the process of automatically and methodically browsing the web.

DNS
A hierarchical naming system for internet resources.

ESCAPE CHARACTERS
Escape characters identify the start of a character sequence which should be
interpreted differently from if the same characters occurred without the escape
character.

FUSE (LINUX)
A kernel module for Unix-like operating systems that lets users create file systems
without editing kernel code.

HTTP
Hyper Text Transfer Protocol — the application layer protocol for interacting with web
servers.

(FORWARD) INDEX
An index is an ordered list mapping an identifier to some data.

INDEXING
Indexing is the process of parsing data and creating an index from it.

THE INTERNET
The Internet is a global system of interconnected computers and networks.

IP (INTERNET PROTOCOL)
The Internet Protocol (IP) is a protocol used for communicating data across a packet-
switched internetwork using the Internet Protocol Suite, also referred to as TCP/IP.

MUTEX
A mutual exclusion system used to ensure exclusive access to a resource on a
concurrent or multithreaded system.

Xi

RDF
The Resource Description Framework is used to model information used in web
resources.

RDFA
The W3C Resource Description Framework — in — attributes recommendation adds
RDF attribute extensions to XHTML web pages.

REPOSITORY

In the context of this paper a repository is a data store for web pages or triples.

REVERSE INDEX
A reverse index is a list mapping data tokens to the original set of data.

REWRITE RULES
Used in web servers to map virtual URLs to actual resources.

SEGMENTATION FAULT
Also known as an access violation, can occur when a program attempts to access a
memory location that it is not allowed to.

SESAME
A Java Servlet/Tomcat based Triple Store.

TCP
The Transmission Control Protocol (TCP) is one of the core protocols of the Internet
Protocol Suite.

TRIPLE
In the context of RDF a triple is a collection of three pieces of data — a subject, a
predicate and an object.

TRIPLE STORE
A purpose built database for storing and querying RDF data

THE WEB
The Web is a system of interconnected hypertext documents on the Internet.

USER AGENT
In the context of this report a User Agent is a string used to identify a HTTP client.

Xi

Chapter 1: Introduction 1

CHAPTER 1: INTRODUCTION

The Web has grown exponentially since its conception and it is now extremely large,
impossible to quantify accurately. Finding information on The Web without any assistance is
near impossible unless you have prior knowledge of its location, and this has ensured that
search engines will always be well used and make an enormous contribution to the
usefulness of The Web. A search engine must first (and repeatedly) collect data for its index,
as the index is searched when a search engine is asked to find information.

This collection process has two parts, first The Web is crawled, and then the data retrieved by
the Crawl is indexed. Crawling is a process where an application called a crawler repeatedly
downloads a page, identifies all links on it, downloads those pages, identifies all their links,
and repeatedly harvests pages until it has acquired every linked page it can find. These pages
are all stored so that they can be indexed.

The pages downloaded are then indexed, each page is parsed and the visible content is
located. All individual words in the page are identified and counted so that a forward index
can be created where each page has a list of words and counts. There is also a reverse index
for each word, which is a list of all the pages where that word appears. Different search
engines will vary their Crawling and Indexing procedures so that the resultant data is tailored
to match the features of the search service provided.

The majority of search engines create their index from visible page content and little more,
however there are new standards emerging known as RDF and RDFa that allow the context of
information on the Web to be specified. The aim of this project is to index pages that are
annotated with RDFa data to potentially allow for a detailed search index and interface.

Crawling for RDFa data will require crawling every page, but only storing some of the
information on them, namely the ones containing RDFa mark-up. There are several key issues
with crawling and indexing a large amount of data. This project will attempt to tackle these
issues with practical scalable solutions.

Furthermore there is not much published research on Spiders and Web Crawlers which
tackles in depth the more specific issues such as identifying unique URLs and ordering a URL
queue to diversify it as much as possible. Hopefully this paper will make a viable contribution
to Spider research and provide a good starting point for others to build upon.

The details are broken down in to several sections in this report. Chapter 2 reviews current
practises and background material used in creating a spider. Chapter 3 outlines the
requirements of this project. Chapter 4 maps out a plan for the design and architecture of the
overall system. Chapter 5 discusses actual implementation of the system covering problems
encountered. Chapter 6 details the results of various tests run when developing the system
and results from running the crawler and chapter 7 concludes the main points in this report.

Chapter 2: Literature Review 2

CHAPTER 2: LITERATURE REVIEW

This literature survey examines the infrastructure and topology of the World Wide Web,
drawing particular reference to finding, indexing and searching for information with and
without contextual enhancements.

2.1: THE STRUCTURE OF THE WORLD WIDE WEB

The World Wide Web (the Web) is an enormous collection of interlinked documents which
reside on servers connected to the Internet. There are several different services that allow
the Web to exist on The Internet.

2.1.1: THE INTERNET

In the crudest sense, The Internet is a very big network of computers. In reality it is lots of
networks linked together to make The Internet. The words “web” and “internet” are often
mistakenly used in everyday language to refer to the “Web” but they are not the same thing.
The Internet is a global network, whereas the Web is the collection of web pages that are
accessible over the Internet from Web Servers.

The Internet uses a numerical addressing system which allows computers to connect directly
to each other. The system currently in use (called IPv4) uses addresses of the format
a.b.c.d where a, b c or d are integers between 0 and 255 (with some restrictions), and is
basically a 32 bit address. This means the max number of available addresses is 232 =
4,294,967,296 without restrictions. In practice there are fewer due to reserved blocks and
unusable broadcast addresses.

The Internet has now become so big that about 10 years ago a specification for a new IP
Protocol (IPv6) was proposed (Network Working Group, 1998). An IPv6 address is of the
format aabb: ccdd: eef f: gghh:iijj: kkll: mmnn: oopp where each pair is a hexadecimal
representation of an 8 bit number making the IPv6 a 128 bit address, giving an address space
of 21?8 = 3.4 x 1038 — which should last much longer than IPv4.

2.1.2: THE WEB

The IP protocol is merely one of the technologies of the giant infrastructure that is the
Internet and the Web. The Web (viewing content, at least) relies on two main types of
server, HTTP and DNS. DNS stands for Domain Name System and it is a mechanism for
resolving domain names (used for memorability, structure and order) to IP addresses. For
example, when a user tries to browse the page at www.google.com the web browser asks the
ISP’s name servers to resolve www.google.com and it will look it up and return an IP so the
computer can make a direct connection. DNS is a hierarchical system and one Name Server
often requests information from another, (more) authoritative one to resolve a query, but
the detail on how this is carried out is beyond the scope of this paper.

Revisions and updates in the network technology behind the Internet and the Web could
provide problems for web spiders and indexers if they are not able to keep up with these
changes, and gracefully operate during transition periods. But these changes apply to all
users and services that access the Internet, which is why transitions are often slow.

Chapter 2: Literature Review 3

2.2: ACCESSING THE WEB

2.2.1: ACCESSING PAGES
Retrieving a web page from the Internet is a process that requires multiple steps. Here only
application layer protocols and interactions will be considered:

Parse the URL

Resolve and IP Address for the domain
Connect to the web server

Send the Page Request

vk wnN e

Wait for/accept the Response

UNIFORM RESOURCE LOCATORS
Uniform Resource Locators (or URLs) are used to identify the location of a specific page on
the internet. Web Page URLs are of the format:

http://server|:port]/folder /page/? this = querystring&more = ok#tfragment

The http prefix, otherwise known as the protocol, indicates that the resource is to be
retrieved from a web server (other examples are ftp). The server element can be an IP
address or a resolvable domain name. The :port section is optional, the http protocol implies
a default port of 80 but it can be specified that the web server is running on a different port.

A URL can omit the /folder/page section; if this is the case a trailing forward slash will be
added as / is the location of the default page at the root of the site. The /folder/page section
is the path to the page.

The substring ?this=querystring&more=ok is the querystring, which allows parameters to be
passed to the page. Anything before the ? (or #) is considered the page address, anything
after is not. Querystrings are name and value pairs in the form name=value and several can
be used separated by an ampersand symbol. The limit on the querystring size is the same as
imposed by the URL length, less the rest of the URL. This URL length limit is not fixed;
different browsers and webs servers have their own restrictions.

Finally the section #fragment is the fragment. Traditionally it identifies a section of the page
for the browser to ensure is visible. The sections are named and defined in anchor tags in the
html and referenced by using the name as the fragment. More recently they have also been
used in pages using AJAX to add a form of persistence using it to store a path or parameters
so that if the page is refreshed the page’s customized content does not reset. Facebook and
Google Mail are two big sites which use both AJAX and fragment parameters.

A URL can only contain specific characters, any others must be escaped. The server (or
domain) must contain only a-z, 0-9 and dashes some UTF-8 characters can be escaped for
other languages; any capital letters can be used but will be reduced to lower case when
normalized. Folder and page names can only contain valid file system name characters unless
the server can translate them, slashes are used to denote file system hierarchy. Querystrings
often need to contain data that is outside of the allowed characters range, in which case they
are escaped using percent encoding (Berners-Lee, 2005). Fragments are not often sent to the

Chapter 2: Literature Review 4

server, so they can contain characters that can occur in the page mark up. Unreserved
characters consist of A-Z, a-z, 0-9,_, -, . and ~; domains, folders and querystrings can only
contain these characters. There are a small set of reserved characters including % (used for
percent encoding), ? used to denote the start of a querystring section, & to delimit
querystrings and # to identify the fragment section.

URL NORMALIZATION
A URL for a specific page can take, in theory, an infinite number of forms. A resource called

A L AN W N R
>
~
S
<
N
<
S
S
2
Q
3
B
o
(o)
S
N
N
I
1)
a
X
1)
3
o
>
~
3

On a page, a hyperlink may specify a URL relative to the page, or an absolute URL, which is
mainly why “..” and “.” are used in URLs. The “..” notation specifies the parent folder, so

awn

for example, if a link was on /test/demo.htm and linked relatively to “.” then it would simply

In practise “.” does not come up much, but “..” does. This poses a problem for crawlers, as it
is best practise to avoid crawling a page more than once in a certain window of time. If a
crawler discovers several variations of a URL and cannot determine that they are all equal it
could crawl the same page many times needlessly. The solution is to normalize (or
canonicalize) the URL, which is the process of modifying the URL to standardize itin a
consistent manner.

Normalization is used by web crawlers and search engines to avoid crawling and indexing the
same page more than desired, however browsers may also normalize URLs to determine if a
link has been visited or cached (Wikipedia, 2010). Browsers may also normalize URLs so that
when the resource is requested from the server it is not needlessly redirected to the
expected (normalized) URL. This is because many clients will only accept a finite number of
redirects to avoid getting stuck in a redirect loop, so if the server redirects the client it could
count against the number of redirects carried out.

There is a standard normalization procedure defined in (Berners-Lee, 2005) which is made up
of many steps. In theory they are all optional, however most should be used for the best
results. They are as follows:

Chapter 2: Literature Review 5

= Convert the scheme (protocol) and host (server) to lowercase

= Add a trailing slash if there is no path specified to indicate the root directory.

= Remove directory indexes

However deciding what is and is not an index is potentially difficult as each
server can have its own list of ‘default (or index) documents’. Even though
index.html may be an index page on one server, it may not be on another,
resulting in a document not found (404) error if the URL is requested after
normalization.

= (Capitalize letters in escape sequences

This is only useful if example.com and www.example.com return the same
content, which is often hard to test, for even if the home page does obey this
rule, other pages may not. It can also be problematic as the same page
requested at two slightly different times could return different content, for
example if the page includes the date and time or generation time.

= Sorting querystrings

The order of querystrings usually does not matter to the server processing
the request, so when a hyperlink is created the order naturally does not
matter so ordering them consistently during normalization is suggested.

= Removing arbitrary querystrings

Most pages using querystrings only use a few select names, so unused ones
could be removed. However a client is not likely to know in advance which
are needed and which are not, so this is not common, but may be done
server-side through rewrite rules.

= Removing default querystring variables

Chapter 2: Literature Review 6

If asc is the default value for sort then the page will render the same whether
it is there or not. However once again a client is not likely to know this.
= Removing “?” if there is no querystring

THE HYPERTEXT TRANSFER PROTOCOL

Most systems that rely or utilise communications over a network follow a protocol. The
Hypertext Transfer Protocol (HTTP) is an Application Layer protocol which is the primary
mechanism used to retrieve web pages, amongst other things. HTTP uses a request-response
principal which is common in client-server network computing. The Hypertext Transfer
Protocol determines the format and parameters the client and server can use when forming
and processing requests and responses (Fielding et al., 1999)

A HTTP REQUEST

Resolve the IP Address for the Domain
If the server value is an IP address then this step can be skipped, otherwise the computer

performing the request must contact the local name server (which is usually specified by the
IP configuration of that machine) and ask for the domain to be translated to an IP address.

Connect to the Web Server
The computer now needs to connect to the server using the IP address and port specified

(default is 80 if no port is specified). The connection is done using the TCP protocol. Upon
successful connection there is no ‘welcome message’ as with some protocols, the client is
free to send the request.

Send the Page Request
The client now needs to format and send the page request. This tells the server the domain

name requested, and the page. Optionally, other information can be sent like form variables,
cookie settings or restrictions on content type or language.

A basic request is formatted as follows (Network Working Group, 1999):

GET /folder/page HTTP/1.1
Host: www.domain.com

This simple request merely asks for a page, specifying no restrictions and without any cookie
data. Without cookie data advanced features such as sessions cannot be used. Cookies and
other restrictions are conveyed and specified in the similar means to the ‘Host’ attribute, in
the format:

Property: value

The first line of the query first states the method (or verb), in this (and many cases) ‘GET’
followed by the path to the document, relative to the server root, and finally the HTTP
version expected of the format of the exchange. The server can reject unsupported protocol
versions. The request is finished with a blank line, technically a ‘character return, line feed’ or

Chapter 2: Literature Review 7

CRLF. Some methods allow or require data after the blank line. As a spider will upload no data
this does not need to be considered.

After a request the connection can remain open if requested by the client and if the server
supports it. A property called ‘Connection’ with a value set to ‘close’” will cause the server to
close the connection after a response. This is often used in simpler request mechanisms,
especially if pages are not requested sequentially and repeatedly from the same site.

Wait for/accept the Response
The client must now wait for the response from the server. If the server is inundated with

requests there could be a long delay, or possibly an indefinite delay if the request goes astray.
This may cause a timeout to occur and pass an error message or page to the user. The
following is a very basic request and response after a request for
http://www.google.com/robots.txt (the response has been truncated from a longer list of
robot control statements).

Request:

GET /robots.txt HTTP/1.1
Host: www.google.com

The request ends in a double CRLF — the blank line signifies the end of the request

Response:

HTTP/1.1 200 OK

Content-Type: text/plain

Last-Modified: Wed, 18 Nov 2009 01:25:08 GMT

Set-Cookie:
PREF=ID=703a862b4b1b0006:TM=1258926213:LM=1258926213:S=RrIw8wOmt0iMrP
bT; expires=Tue, 22-Nov-2011 21:43:33 GMT; path=/; domain=.google.com
Date: Sun, 22 Nov 2009 21:43:33 GMT

Server: gws

Cache-Control: private, x-gzip-ok=""

X-XSS-Protection: O

Expires: Sun, 22 Nov 2009 21:43:33 GMT

Length: 1234

User-agent: *
Disallow: /search

The response ends in a double CRLF.

The content of the response starts with the line ‘User-agent: *’, and it always starts after the
blank line which follows the header — regardless of the type of data requested.

2.2.2: SI1ZE

There are currently well over 1.25 trillion (1,250,000,000,000) unique linked URLs on the
Internet (Google, 2008) (Majestic-12, 2009). There are bound to be more pages on the
Internet as some will not be linked to others, making them hard to find, and others will be

Chapter 2: Literature Review 8

behind password protected areas, or prohibited by spider politeness rules such as robots files
(which are discussed later).

The web contains a truly vast amount of data. For example, (Cafarella and Cutting, 2004)
assumes that a single web page is on average 10 KB in size. Based on this assumption 1.25
trillion pages would take up 11.3 PB if they were stored in an uncompressed format. That
paper is 6 years old, with advances in network technology, the average internet connection is
currently much faster and it is clear that web pages are more content rich now, with images
and other included files such as JavaScript and Cascading Style Sheets (CSS), making the
overall average size of web pages larger.

The Google homepage, which is renowned and now patented (Lardinois, 2009) as a very
simple user interface requires 50 KB of bandwidth, a Google search result is around 75 KB and
many other reasonably simple pages require well over 100 KB. This could put the disk cost of
storing the pages at 113 PB, but this is still a vast underestimate as it excludes the space
needed for all the streaming video, image hosting, content distribution and all the other rich
content providing sites.

In 1998 Google had an index of 24 million pages (Brin and Page, 1998) and in the space of 10
years it has risen to well over 1 trillion. Google stores copies of the pages and reverse indexes
(discussed later) for all words in the page. Their 24 million page index of 1988, with a
compressed repository of all pages downloaded was 108.7 GB, assuming the data is still
stored in a similar format with the same level of compression, their new index of today’s web
would be around 41,000 times larger, which would be 4.25 PB. This estimation does not
compensate for the increase in internet connection speed and page size. Their paper
acknowledges that as computing performance increases they could easily use heavier and
more intensive compression to reduce their index without having to worry about the
performance overhead.

These statistics are based on research and are not definitively accurate but they are educated
estimates. They are also used later and their use implies this warning.

Chapter 2: Literature Review 9

Hard Drlveﬂ(a:sgs_tz&%r Gigabyte

$10,000,000.00

$1,000,000.00

»

$100,000.00
$10,000.00
$1,000.00
$100.00
$10.00
$1.00

$0.10

$0.01
& & o &P > ¥ &®

N

FIGURE 1: A GRAPH OF THE EFFECTIVE COST PER GB OF HARD DRIVE STORAGE AGAINST TIME (MATTHER KOMOROWSKI,
2009). PERMISSION AQUIRED.

There are two main factors that have contributed to the exponential growth of the Web.
Firstly, the number of internet users has grown by almost 5 times since 2000, and many of
these users will be contributing to the Internet in one way or another; for example, by
making websites, setting up businesses and participating in forums. The other factor is the
cost of disk space. When Google released their first big index in 1998, disk space cost about
S50 per GB, whereas today the rate is about $0.07 per GB (Figure 1) (Matthew Komorowski,
2009). With disk space getting exponentially cheaper there is less pressure on service
providers to clean up old content to save space; instead many sites now have archives of
older versions of pages or documents. A prime example of archiving is archive.org (also
known as The Wayback Machine) who have been archiving copies of public web pages since
1996, and they claim to have over 3 PB of storage for this task (Internet Archive, 2009),
however they do only store html copies of pages, no other media such as images, video, style
sheets etc.

The size of the Web as a whole is a factor that must be taken into consideration when
attempting to crawl all or part of it. If a front-end search style interface is being provided then
storage of the data for processing and referencing would require serious consideration, but
even if this is not the plan, downloading and parsing the data will still require lots of
bandwidth, time, processing and (electrical) power. All of these issues will be addressed later
on.

The estimated number of internet users is just under 2 billion (Internet World Stats, 2009)
and the majority of those users will be trying to find information in one way or another. If
each user was assigned an equal portion of individual URLs they would have over 625 each,
and manually searching those pages would still take about a day if the user spent a couple of
minutes on each. Furthermore, if their search was completed, that small one two billionth of
the Web may not have contained the information they were looking for, rendering their

Chapter 2: Literature Review 10

effort useless. This consideration helps illustrate how useful search services like Google are,
especially when they can produce results in well under one second.

2.2.3: SEARCH ENGINES

It is a fact that the Web is huge, and that no one user could easily find information on it
unless they had prior knowledge as to its location. That is why search engines are essential to
the everyday use of the Web and why almost half of the top 20 websites ranked by popularity
are search engines (Alexa, 2009). Search engines provide a crucial gateway to the Internet,
allowing users to enter a short query and frequently find the information for which they were
looking.

Search engines can only truly be considered useful if the user is able to find the information
or site that they are looking for fairly quickly. Research from a survey (iProspect, 2006)
carried out in 2006 states that the majority users (62%) of a search engine will only look at
the first page of results (usually the first ten) results. The survey was also conducted in 2004
and 2002 and found that as time went on, more people were only looking at the first page of
results and less people (from 19% down to 10%) were prepared to go beyond the third page
of results. This means that the algorithms used to sort the results must be very adept at
ranking the entries in their indexes in terms of relevance to the user's query. This has always
been a problem for the operators of search engines because for as long as search engines
have been around. There have been people trying to mislead them and distort the results by
using various tactics to promote their sites for specific queries to which they may not actually
be related in order to increase traffic, sales or to capitalize from advertising.

2.3: THE WEB, IN CONTEXT

There is a lot of ambiguity in language, for example the word "close" can refer to both
proximity (those cars are close to each other), or state (close and open, in reference to
electronics for example gates and switches, or something as common as a door), but it is the
context in which the word is used that often determines its meaning. As the Web must be
indexed automatically due to its size, computers are left to analyse the content and though
there is much research into the analysis and processing of text it is still far from perfect and
can be a very resource intensive process. An extension to the XHTML markup language called
RDFa has been developed to allow machines to easily 'read' web pages, giving them the
ability to look at the data between HTML tags and determine the meaning of the tag’s
content; for example, whether it refers to a person, or a place, or any number of other things
(W3C, 2008). RDFa allows the representation of RDF data as XHTML attributes.

2.3.1: SEARCHING CONTENT VS. CONTEXT

When currently searching the Web there is little context analysis. For example, some names
are ambiguous in the sense that they are made up of words which have another meaning in
language. With contextual information available a user could then search and specify in which
context they were searching. For example they could specify that they are (or not) looking for
a person.

2.3.2: RDF AND RDFA

10

Chapter 2: Literature Review 11

RDF (the Resource Description Framework) is a language for providing information about
resources on the Web (W3C, 2004). The RDF specification is built on the XML syntax. The
intention for RDF is that it can be used in situations where the information is to be processed
by computers and not individuals, for example data mining, or comparisons. RDF is based on
the idea that web resources are identified using URIs (uniform resource identifiers) and these
URI’s can be described with properties and values. RDFa allows RDF data to be embedded
into an XHTML page as tag attributes:

<div class="right" about="http://www.ivan-herman.net/foaf#me"
typeof="v:Person foaf:Person">

indicates that the div specified and all content in it is a type of “v:Person” and “foaf:Person”
entry. The fact that they contain the word person does not mean that they are actually about
a Person. Their definition is in the namespaces identified earlier in the page (shown below)
which link to URLs and the content at these URLs helps define the relations.

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:v="http://rdf.data-vocabulary.org/#"

Identifying people’s details is just one of many uses of RDFa, and it is already an existing
ontology but there are many including those for books, products and images. An Ontology is
a description of entities and their relationships, which is designed to be read by computers
and not humans.

2.3.3: PARSING RDFA AND STORING RDF DATA

A system has emerged for storing RDF called a Triple Store. It stores identities that are
constructed from triplex collections of strings. The triplex collections represent a relationship
between a subject, predicate and object (Jack Rusher, n.d.). There is sometimes a fourth
element, the context — technically a system that can store these is called a Quad Store,
though many support the fourth element they are still known as Triple Stores. Storing the
data is the less technically challenging part; the feature of many RDF Triple Stores is that they
allow for logical querying in a Prolog/SQL style syntax call SPARQL. SPARQL allows for logical
relationships to be created as graphs. To be able to store RDFa in a Triple Store its containing
page needs to be parsed and the RDFa converted to RDF.

2.4: CRAWLING AND INDEXING

There are numerous projects in place to index the Web for different purposes. A very
common reason is to provide data for a search service, for example Google, Yahoo and Bing
(formerly Live Search). But there are other reasons. As previously mentioned, Archive.org
indexes data so that it can keep a historical record; and the company Majestic-12 provide
linking relationship statistics to companies and individuals who carry out Search Engine
Optimization services (used to ‘improve’ search engine rankings).

‘Indexing’ the Web as a whole has two major parts, Crawling the Web to find and download
all the pages and then indexing those pages by parsing them and creating a searchable index

11

Chapter 2: Literature Review 12

structure. Crawling is essential to indexing the Web as without the data from the crawl there
would be nothing to index. The procedure of crawling can be a very intricate and delicate one
because if any one component of the crawler process does not perform as expected it could
cause it to slow down and perform inefficiently or behave impolitely and be banned from
many web servers.

2.4.1: BAsIC CRAWLER AND INDEXER
The simplest logical process for crawling the Web is as follows, it assumes that we have a list
of URLs to crawl and that it keeps track of the URLs that have already been called:

Add a ‘seed URL’ (a URL to start with) to the crawl list

Download the next entry on the crawl list if has not already been downloaded before
Parse the HTML extracting URLs.

Save the HTML for indexing

Add those URLs to the crawl list

While the crawl list is not empty go to step 2.

ok wnNE

This basic process has issues and limitations that are considered later on.

This simplest logical process for indexing the crawled data is as follows, it assumes (crudely)
that we have a big folder with all pages in them and that they are deleted after being indexed
and that for each word we have a list of pages in which they occur:

1. Load the next page in the folder
Make a set (no duplicates) of all the words that occur in the page
For each word in the set
a. Add the URL of this page to the list for word
4. While there are still pages in the folder go to step 1

Once again, this basic process has issues and limitations which do not consider the advanced
structure of web pages and this will also be addressed later on.

2.4.2: POLITENESS

Politeness is a term used to describe how a spider behaves when it crawls the Internet. It
generally takes into account whether the spider obeys limitation rules of the site (or not) and
how aggressive the spider is towards an individual web server — in other words, how often it
tries and access pages from that site and considering that it could cause a Denial of Service
error for other, real users. A polite spider will obey all limitation rules and will not query any
individual site too frequently.

(RE)CRAWLING

Assuming a spider uses the basic crawling logic described in section 2.3.1, it instructs the
spider to use the next URL off the list to crawl. If the crawler is set to start on the homepage
of a fairly large site, there will probably be at least a handful of links on that site that point to
other internal pages, and when those pages are followed there will likely be a few more links
on each page which are unique and lead to other pages on the site. Before long the crawler

12

Chapter 2: Literature Review 13

will spend most of its time on this one site until it has visited every URL, at which point it will
then probably get hung up on another large site.

Consideration must be taken when processing the ‘crawl list’ so that it is not done
sequentially, unless the process of adding to this list is not sequential. Though this extra
consideration will require processing time, and add general overhead - it is essential to
prevent the IP(s) of the spider from being banned by vigilant webmasters who are annoyed
by handful of impolite spiders preventing their real users from gaining access (Cody, 2001).

If there is a need to maintain a reasonably up-to-date index then the rate at which the site is
re-crawled must also be determined and set to a sensible frequency. For a small crawler
project, the resources available for the system may force this to be several months or more,
but large search engine providers can afford to re-crawl at least once a month, if not more
frequently. The robots restrictions (discussed later) does allow a crawl and re-crawl| delay to
be specified, however it is not an official extension to the robots specification and for that
reason many spiders ignore it (Wikipedia, 2009).

ROBOTS
There is a two part system in place used to explicitly inform spiders (otherwise known as
Robots) of what they are not allowed to access and to crawl on a particular domain.

One part of this system is known as the Robots Exclusion Standard. There is no official
standard or RFC for the Robots Exclusion Standard specification; it was created by consensus
in June 1994 (Pages, 1994). It consists of a text file that resides in the root of the website,
called ‘robots.txt’. The address of the robots file for www.google.com would be
http://www.google.com/robots.txt for example.

Robots files can specify instructions for all robots and specific robots. An example would be
as follows:

#This is a valid comment

User-agent: * #This line says these rules apply to all robots
Disallow: /paths

Disallow: /path/

User-agent: Googlebot
Disallow:

The first line is comment, denoted by the # prefix. The comment on the second line is also
valid and does not affect the text preceding it. The first user agent specifies a wildcard; this
means any spiders that are not otherwise explicitly addressed should use these rules, that
means Googlebot will ignore this section as Googlebot has its own specification.

Googlebot is allowed everywhere as the disallow statement is blank, in other words it is not
disallowed anywhere.

Any other search engine is not allowed to access any path prefixed by the disallow entries:

= /path/file is not allowed

13

Chapter 2: Literature Review 14

= /paths/file is not allowed
= /pathscanbelong is not allowed
= /pathtest is allowed

The other part of the system can be implemented in the head section of a web page in the
form of Meta tags. It can tell the spider whether or not the links can be followed or indexed
(Wikipedia, 2009). Common values can specify that the page is not indexed at all, the page is
allowed to be indexed but no links are followed and that the page is not to be cached. Unlike
robots.txt, some spiders do ignore Meta tags to preserve the integrity of their results.

2.4.3: DATA STRUCTURES

Google (Brin and Page, 1998) took much care, even for their first major index to use very
carefully designed data structures to store information, they acknowledge that generally the
performance of computers improves but that disk seek time is still around 10ms, and for that
reason they optimize their structures to avoid disk seeks if possible. Testing whether a URL is
new or not could be quite resource intensive, for example if a simple list was created of all
URLs seen so far it would then have to be searched each time a new URL was found and as
the list got bigger the search would get slower. For text processing and storage there are
several common tree based data structures which could prove beneficial for a fast lookup,
but if stored on disk they are expensive in terms of space as overhead is added in the form of
pointers (Goodrich and Ramassia, 2004).

Google (Brin and Page, 1998) uniquely checksum their URLs which shortens them and allows
for a quicker comparison and binary search is used to link the checksum to an ID which can
then be used to find details about the URL. Larger data structures which will not need rapidly
searching or iterating are compressed to save on resources (disk space), which is a calculated
plan as the cost of performance has been traded against disk space gain.

2.4.4: BANDWIDTH

Even if not all pages are to be indexed when crawling the Web, most must be downloaded so
that the links on the pages can be followed as these or subsequent links may lead to a page
that does need to be indexed. Based on the previous assumptions after examining reliable
sources (Google, 2008) (Majestic-12, 2009) that there are at least 1.3 trillion pages on the
Internet the following could be reasonably assumed.

(Cafarella and Cutting, 2004) Suggests that on average a web page would be about 10 KB in
size, as noted earlier, this estimate is several years out of date, but it is sufficient for this
example. The request and data header add about 0.5 KB (based on the earlier HTTP example
in section 2.1.4) so it will be assumed (very conservatively) that the total bandwidth to
download a page including headers and overhead is 10.5 KB (which is 86 Kbits). So the
bandwidth for 1.3 trillion pages would be:

= 13,977,600,000,000,000 Bytes or
= 111,820,800,000,000,000 Bits or
= 12.4 PBytes or

= 111.82 PBits

14

Chapter 2: Literature Review 15

Currently, one of the fastest home internet connections is about 50 Mbit/sec (Broadband.org,
2009). If it is assumed a connection of this speed is used and that it will always access pages
at full speed with no delays, and disregarding the fact that home internet connections have a
slower upload rate than download rate, the following calculation holds:

111:820;800:0OO’OOOrOOO(data to download) - SO;OOO'OOO(connection speed)
= 2,236.416;000(time in seconds)

2,236,416,000 seconds is 37,273,600 minutes, or 621,226 hours, or 25,884 days, 70 years.

This figure in reality would be greater because removing the assumptions, and introducing
reality would add many time delays. Another factor ignored is the bandwidth taken to find
out if a URL contains an image, binary file or other non-html content, as they would need to
be ignored too. Only the header of the response needs be retrieved but this is another 0.5KB
per request which will add more delays.

Corporate broadband services run much faster, so a faster connection would speed up the
process as more concurrent requests could be made to different sites simultaneously, but
network and server delays would not be improved.

2.4.5: STORAGE

Crawling and Indexing the entire Web requires lots of disk space (as well as bandwidth) and
there are several considerations to be addressed. The conservative estimate made in section
2.1.1 suggested that 113PB may be required to store all pages for indexing. Other lists and
indexes involved may a large volume of space (uncompressed). A good compression scheme
could reduce it by up to 75% (Brin and Page, 1998) cutting the space required down to
28.25PB. No physical disk is currently that big, so one way or another, the data would need to
be split up. It is possible that some indexes may be bigger than one physical disk too.

The data collected, as well as being vast, is quite expensive in terms of resources required to
gather it, as it takes a lot of CPU time and bandwidth, so it could be very detrimental if all or
part of it were lost. Unfortunately backing up data requires up to double the disk space used
to make one whole backup, or less if the overhead of checksums are introduced (AC & NC,
2009).

The Google File System (Ghemawat, Gobioff and Leung, 2003) tackles both these issues
simultaneously whilst also trying to maximise performance and concurrent use. There are
several assumptions made based on how they store data, but it works as follows:

In each cluster there is one master server and multiple data (chunk) servers. The data, saved
as files are divided in to 64Mb chunks. Each chunk has a replication count (with a default of 3)
and these chunks are stored on at least that number of chunk servers. The master server
keeps track of where files exist, and manages locks and access. The concept is highly detailed
and the intricacies are more than needs to be covered here.

2.4.6: OVERALL PERFORMANCE
Google (Brin and Page, 1998) acknowledged that hardware performance is a very serious
consideration when processing large amounts of data, and that slightly optimizing one area of

15

Chapter 2: Literature Review 16

code can rapidly shift a bottleneck from where it was to somewhere else (usually the next
slowest part of the system). For the initial big crawl that Google carried out, of 24 million
pages, they ensured that the indexer was optimised just enough to run faster than the
crawler so that it would not be the bottle neck and the crawler was the limiting factor on
performance at the time. It was also observed that disk access is a significant area of their
systems that hindered performance, with disk seeks taking around 10ms the data structures
and systems were designed to minimise the number of disk seeks, either keeping indexes in
memory or optimizing data structures so that sequential access was possible in most cases.

There will always be bottlenecks in large scale web spiders and indexers, and they are likely
to occur where less has been invested in a certain resource. Some can be dealt with or
tolerated, others may cause the system to stop working. For example, a lack of available disk
space will stop a spider but bandwidth limitations on an internet connection may cause the
spider to run slower, but will not stop it entirely. The ideal situation would be where the Web
could be crawled and indexed so quickly due to an abundance of resources that the system
could either wait until, or finish, just as the next crawl was due. If the system finishes quickly
it will still have bottlenecks, they will just be negligible as they do not affect the planned use
of the system.

2.5: DISTRIBUTED COMPUTING

Several serious attempts to crawl the Web (many successful) have used distributed
computing to achieve this (Majestic-12, 2009) (Brin and Page, 1998) (Cafarella and Cutting,
2004). Due to the vast amount of data collected from a crawl distributed storage is required.
Network Attached Storage is still distributed as it spans the data (distributes) over many
drives. Google distribute the data and workload over many computers. Exact figures are not
known, as Google keep their current workings very secret, but it is clear how much data they
must store (as a minimum) and it can be reasonably be assumed that there are lots (possible
800,000 plus (Dean, 2008)).

Another very good reason for using distributed computing (with cheap hardware) is reliability
(Dean, 2008). Jeff Dean of Google outlined the failure rates and servers affected that occur
within a year of installing 1000 servers:

= Power distribution failures (500-1000 servers)

= 20 rack failures (40-80 servers)

= 12 router reloads (takes down network services)

= 3 router failures (networks become disconnected instantly)
= 1000 individual machine failures

= 1000’s hard drive failures

High cost machines could easily have similar specifications however have a greater cost due
to more reliable hardware. Cheaper machines mean permanent failures cost less to rectify,
and unlike supercomputers or mainframes, they can be slowly built up. Distributed
computing allows for greater redundancy if the infrastructure design is well planned as key
points of failure can be avoided by spreading services on systems or geographically, unlike
bigger non-distributed systems (such as mainframes).

16

Chapter 3: Requirements and Analysis 17

CHAPTER 3: REQUIREMENTS AND ANALYSIS

3.1: OVERALL STRUCTURE

As with any complicated and/or large scale project or challenge there are many potential
solutions and at first it may be hard to determine the long term implications or differences.
This means that some preliminary design choices may become crucial to the project’s success
later on. This project has three main areas of focus, a web crawler, an indexer and scalability
as a whole. These core items can be subdivided into many smaller areas as detailed in the
following sections.

3.1.1: CRAWLING

Crawling can be an ambiguous term as it is often used to refer to the whole process of
crawling, indexing, and sorting web pages, or more specifically it is used in reference to
downloading pages from a queue. In this paper, when referring to the system as a whole the
aim is to use the term Spider. “A [Web] crawler is a computer program that browses the
World Wide Web in a methodical, automated manner.” (Wikipedia, 2010) - Wikipedia’s
definition is unclear as browsing involves some form of parsing, sometimes done in the
indexer. The Crawler, as talked about here, is a system which goes from page to page
discovering links and finding data to index; it encompasses subsystems like the URL queue
and duplicate URL checking.

3.1.2: INDEXING

Data from pages retrieved as part of the crawling process will need to have information
deemed useful extracted and stored. This step can be broken down in to two parts, parsing
the page to locate and extract the data, and then storing the useful information extracted.
Parsing is a task specific activity, for example parsing for a search engine would require
forward and reverse indexes to be generated. This also applies to storage, search engines will
often store the whole page so that search results can reference points in the page where the
search terms occur. The data being indexed can define when indexing occurs in the overall
process, this is discussed later.

3.1.3: SCALABILITY AND SPEED

There are many delays that the crawler may encounter and resource limits could also impose
limits on the crawler such as limited disk space or bandwidth. As any one server has limited
resources, even if it is fully upgraded, a Spider needs to be scalable so that it can run across a
number of servers allowing it to go about its task as quickly and efficiently as possible.

3.2: CRAWLING

3.2.1: TRACKING LisTS

Several aspects of a Crawler need to keep track of large lists of data, most commonly URLs.
The various aspects of a crawler require the use of lists for different purposes and therefore
the lists in each area require specific features or enhancements. The term list is used here as
an umbrella term, the ideal solution may not eventually be a list; it may be a tree or some
other data structure.

17

Chapter 3: Requirements and Analysis 18

The implementation of these lists will need to be done carefully with respect to their required
features, with special attention given to performance as a poorly implement list may prove to
be a bottleneck.

3.2.2: QUEUE URLs 10 CRAWL

URLs that are discovered while crawling a page also eventually need to be crawled. A list of
these URLs would need to be maintained; ideally removing entries once they have been
crawled. As discussed in the next section, organization of the list can be very important for
preserving crawler politeness.

3.2.3: BEING POLITE

A crawler must avoid crawling a particular site (or server) too often (over-crawling) as well as
not trying to access restricted areas. Failure to be polite is likely to cause a crawler to be
banned from accessing sites - if the crawler does not obey rules correctly then it is probable
that the IP(s) of the crawler will be blocked.

When a page is crawled, unless it is a link directory it is quite likely that most links on that
page will link back to other pages on the same domain. This means that as a list of URLs to
crawl is generated it will likely be dominated by this domain. This is because while processing
the list it will more often crawl pages from that domain. Processing the list of URLs to-crawl
(known as the crawl queue) sequentially often means that over-crawling will occur, one
domain at a time.

The Crawler’s architecture will essentially determine where it deals with over-crawling a site;
however the method used can be implemented wherever this is. When the decision is made
as to which URL to crawl next, checks need to be made to ensure that this URL has not been
crawled previously, or recently.

3.2.4: DOWNLOADING A PAGE

A crawler needs to download web pages (which are technically files), it is realistically the only
way to find more links on the Web and continue its task. The basic procedure is outlined in
chapter 2, using the HTTP request-response system, but there is more to be considered. The
method used to download files would need specific features:

= |t almost goes without saying that it should fully support the HTTP 1.1 protocol. Since
its introduction in 1996 it was the majority protocol in use within 6 months and it is
almost certainly standard today (Wikipedia, 2010).

= |t must be capable of timing out. A crawler cannot afford to wait too long for a
response; for example if a server is heavily overloaded it may start sending a
response but not complete it, or perhaps not even respond at all. In this case the
crawler should move on after a specified delay and ideally queue the URL to be tried
again at a later time.

= For use in a crawler it is likely to be used in several concurrent threads within an
application, therefore which ever method is used needs to be able to run
simultaneously on several threads without any cross-thread interference.

3.2.5: EXTRACTING LINKS

18

Chapter 3: Requirements and Analysis 19

So that the crawler can explore further it must be able to find links on the pages it downloads
and then crawl them. HTML pages are usually represented as long strings of text and they
contain hierarchical mark-up tags which can have attributes, values and inner content. The
hierarchy allows the page and elements in it to be represented as a hierarchical collection of
data. These representations allow for various methods of finding links on pages. A suitably
fast and flexible method must be used to ensure the maximum number of valid links can be
discovered.

3.2.6: CHECK FOR DUPLICATES

At some stage the Crawler needs to determine whether a URL has already been crawled,
either as they are discovered or as they are taken from the crawl queue. This is partly
associated with the politeness of the crawler as it does prevent over-crawling a page or
domain, but it also boosts efficiency. It is not feasible to crawl duplicates as they come up, as
pages with many links to them may clog up the crawl queue meaning other pages never get
crawled.

3.2.7: QUEUE FOR INDEXING

Depending on how indexing is handled, more specifically if it is done separately from the
Crawler; then the pages discovered and downloaded need to be queued and stored to be
indexed. Systems like Google use the crawler to download the page and then store it to be
indexed (Brin and Page, 1998). Separate indexer processes work though the store counting
terms to create inverted and forward indexes as well as discovering links which are sent to
the URL queue that feeds the Crawlers. Intermediate page storage may only be needed if the
Indexer and Crawler work at different rates, which is probably quite likely as synchronizing
them would mean one is just wasting time sleeping. The Crawler may be forced to wait if the
Indexer is slower and the intermediate storage becomes full.

3.2.8: DECIDING WHEN TO STOP

Though it is theoretically possible for a crawler to continue crawling until every linked page it
can discover has been visited; due to limitations such as resources or time it could be more
practical to impose some sort of limit. There are various ways such a limit could be imposed.
If any limit is applied there may be a need to analyse content during Indexing and prioritize
certain URLs if it is thought they may be more relevant or useful.

3.3: INDEXING RDFA

Indexing in a Spider is completely task specific; in this case the indexer needs to focus on
parsing RDFa. As discussed previously and later, the ideal way to store RDFa is to convert it to
RDF so this is what the indexer will need to do.

3.4: STORING RDF AND RDFA CONTENT — TRIPLE STORE

The RDF extracted from web pages that have been crawled needs to be stored; it would be
ideal to store it in a manner that allows it to be easily searchable. A database system would
easily allow vast amounts of text to be stored and indexed so that it easily searchable. (Note:
database indexes and indexing is not the same as Spider indexing). However a system that
can be based on database engines has been developed called a Triple Store.

19

Chapter 3: Requirements and Analysis 20

Triple Stores are aimed specifically at storing RDF triples; they also index the triples so that
the triples are searchable using a specific query language called SPARQL. There are a myriad
of Triple Stores available in a range of languages and they all scale differently, some to
millions of triples, and others to billions. Unfortunately the more powerful Triple Stores
require vast resources such as 16 GB of memory per storage node. A suitable Triple Store will
need to be chosen for storing RDFa.

3.4.1: DATA INPUT, OUTPUT AND QUERIES

The means of adding and extracting data is very much dependent on the method of storage
used, however the most suitable methods (being Triple Stores and Database Engines) often
offer similar mechanisms. A web interface is a common way to control data; and most Triple
Stores and database engines have one. Data can be uploaded though the HTTP POST
mechanism, and retrieved with HTTP GET requests (which is the standard request used to
access a page). The data retrieved can be restricted using specific queries. Alternatively some
Triple Stores and most database engines offer client libraries for most common languages
which sometimes offer more control than a web interface, and more direct interaction with
the server. The crawler will somehow need to interact with the Triple Store to insert data.
The ability to query the Triple Store will be a non-essential and low priority requirement.

3.5: SCALABILITY

Crawlers can be difficult to create and run as there are tasks they must perform which rely on
external systems which are entirely out of the control of those running the crawler. There are
also areas of the system which could prove to be very resource intensive; these factors must
be accounted for and coped with as much as possible.

3.5.1: HARDWARE

Crawling and Indexing can be very resource intensive; lists needs to be managed, reshuffled
regularly and lots of data needs to be stored. Using just one mediocre machine may prove to
be very slow. Resources needed by a Spider are hard disk space, internet bandwidth, CPU
time and memory. The cost of most of these resources scale exponentially with size, which
means it might be more cost effective to distribute load among many average machines
rather than few very powerful ones. Having many machines also improves redundancy
because if one machine fails it proportionally makes up less of the cluster and unless it
provides a key role this should have less of an impact.

3.5.2: STORING DATA

A Spider will potentially acquire and generate a lot of data, some of which will be temporary
such as queues and some will be permanent, like the data in the Triple Store. All of this data
needs to be stored in such a way that is easily accessible, for example it all appears on the
same logical device; it also needs to be in some way protected against failure. If a disk fails
which contains a section of the data it may well render the whole set of data useless which
would mean starting the crawl again!

The current limit for storing data in one physical device (such as a disk) is around 2 Tb which
implies that for more than 2Tb to appear as a logical device (i.e. a mount point in Linux), a
mechanism to span the data across several devices would definitely need to be used.

20

Chapter 3: Requirements and Analysis 21

3.5.3: SPEED

As part of the crawler, pages need to be downloaded from external servers and this process
may suffer delays due to many factors. The first step is the DNS lookup. This sets a chain of
requests going between the hierarchy of DNS servers, and some of the servers may be too
busy or unavailable to answer a request, meaning it could be delayed for some time or
eventually timeout altogether.

If the DNS lookup is successful the crawler can then proceed to connect to the server and
download the page. The connection process is also susceptible to delays which can be caused
by network issues or server load, or just by the server not being available at all. Once a
connection is made the server can also delay the response if it is overwhelmed.

Regardless of the cause of any delays, they must still be tolerated in the hope that the page is
successfully retrieved. So that this does not become a bottleneck one solution would be to
make several requests simultaneously; it means that while potentially waiting for some page
requests others will finish and new ones will start, so the crawler is always busy doing
something.

The ideal situation would be where the crawler is going so fast that its limiting factors are
environmental conditions that are unchangeable. For example, if the crawler is downloading
pages so fast that the bandwidth limit is reached, or it runs out of disk space when absolutely
no more is available.

3.6: EVALUATION

The final system and its components will need to be evaluated to determine whether it has
become a suitable solution for the project. It will be compared against the original
requirements set out here, where an analysis will be made comparing the similarities and
differences, why they exist and how they have or have not benefitted the project. A site or
sites with a known number of triples will also be crawled to ascertain whether the Crawler is
capable of finding RDFa data and this will show the crawlers accuracy. Other scalability and
performance tests on components of the system and the system as a whole will be carried
out during the development and evaluation.

21

Chapter 4: Design 22

CHAPTER 4: DESIGN

4.1: OVERVIEW

[[
‘ Robots Cache ‘ <
\

A

Crawler

v Indexing
[\
[Request URL Download
> >
—){\ URL Queue </ » ep——" —> — > Parse RDFa
A | l
/
Queue unique Check for ! ; ‘/\
URLs [! dhelleeties D ol Extract links Store RDF —> Triple Store ‘\/
A
A i .I.
\ 4

| URLCache

A 4 +) 4
URL Queue data URL Cache data Triple Store data Lﬂ

Data Storage

FIGURE 2: AN OVERVIEW OF THE SPIDERS ARCHITECHTURE AND INTERACTIONS

Figure 2 shows an overall structure for the Spider as a whole. The URL Queue, Robots Cache,
URL Cache and the Triple Store are all separate applications (or services). All applications will
run as single instances except the crawler itself which will run on several servers. It is likely a
few other service applications will be created for tracking running applications and for logging
purposes.

4.1.1: UNITY: CRAWLING AND INDEXING TOGETHER

In a system which both crawls and indexes data, there are two main ways to approach the
need for both processes. The first approach is to use a crawler to take URLs from a queue,
download the pages and then send them to a store. A separate process, the indexer, retrieves
them from the store. Once the pages are retrieved they are parsed to extract links and other
desired data; the links are then sent to the queue and any other data is stored as appropriate
for the specific system.

Alternatively indexing could be done as part of the crawling process. If each document needs
to be stored with the indexed data, for example for referencing, then the first method is likely
to be best. However, if only the indexed data needs to be stored then indexing after crawling
in the same process can minimize network bandwidth and potentially improve performance.
As the data of a page does not need to be sent to another service, server or process it can be
processed on the same machine in the same process simply passing the memory reference to
the parser. This also means no intermediate storage needs to be used. As it is not necessary
to index separately for this project it will be done as part of the crawling process.

22

Chapter 4: Design 23

4.2: LANGUAGE

There are many programming languages around today all of which have pros, cons and
specific abilities. The choice of language could prove to be a key factor but on the other hand
it may well cause restrictions too. The available languages could be restricted by the systems
the code is going to be run on, for example Microsoft’s .NET languages do not run natively on
Linux (some, mainly C# can be run now under Mono (Mono Project, 2010), however some
features of the .NET framework are not implemented). Languages like Java and those of the
.NET framework have vast component libraries and memory management which can mean
when used, programming tasks are faster to complete and easier to debug, however they can
suffer in raw performance because of the safety checks and garbage collection that goes on
while the program is running as well as lacking explicit use of pointers.

On the other hand, languages like C and C++ can be harder to use, and require much custom
code or 3™ party libraries to perform ‘simple’ tasks that can otherwise be done with the built
in libraries included in Java and .NET. But beneficially they also allow complete control over
the allocation of resources. Like other decisions to be made, there is no correct choice out of
the many potential solutions, each language will have benefits and cause issues.

The language used to implement the bulk of the system will be C++. The motivation for this
choice is primarily due to two implicit requirements; the first is that the system will be
running on Linux, mainly to avoid licensing costs, which essentially discounts any Microsoft
languages such as ones using the .NET Framework like C#. However, Linux file systems
generally do not suffer from fragmentation on the same level that Windows ones do which is
a performance benefit. Secondly, there is substantial emphasis on performance, with the web
being so vast it is beneficial for the crawler to run as quickly as possible. There are many data
structures which along with being carefully designed, need to be accessed quickly, C++ allows
much tighter and yet more flexible control over low level resources such as memory which
may aid performance.

4.3: DATA STORAGE

There is potentially the need to store a vast amount of data, possibly more than can fit on
one physical disk. There are four common ways of storing data across the boundaries of disks
and partitions; in this section they are given a critical review.

4.3.1: RAID

A “Redundant Array of Inexpensive (or Independent) Disks” (RAID) is a very common storage
solution, as the name suggests several cheap disks can be used to create a larger array which
appears to the host system as one drive. Contrary to the name’s suggestion, RAID arrays are
not always redundant. There are several levels of RAID often identified using a numbering
system. The most common RAID levels are detailed in Table 1.

23

Chapter 4: Design 24

Raid Minimum Space Description
Level Disks Available
(of n disks)
0 2 n Data is ‘striped” across the disks in the array. Access is fast

as sequential stripes are stored on separate disks. There is
no parity or mirroring and hence no redundancy

1 2 n/2 Data is mirrored between pairs of disks, for example with 4
disks (1-4) 1 may be mirrored to 2 and 3 mirrored to 4. One
of each pair can fail without affecting the array.

5 3 n—-1 Data is striped with distributed parity; this means that if
one drive fails access can still be maintained as reads can
be calculated from the distributed parity. With one failure
the data is at risk as a second failure will render the array
useless.

6 4 n—2 As with RAID 5 the data is striped but with dual distributed
parity. Up to two drives can fail while still allowing access.
This means that if one drive fails the array is still redundant
which is useful as larger drives take longer to re-sync with
existing data, so while the failed drive is being replaced
and re-synced the original data is still protected.

TABLE 1: RAID LEVEL COMPARSIONS

Traditionally RAID systems run locally, that is on one machine and a limiting factor is often
the number of drives you can connect to a machine or RAID Controller. It also means that the
machine itself could be a bottleneck to accessing the data. The SATA Il Bus has a data rate of
3 Gbit/s but the PCl bus has, at best a throughput of about 4 Gbit/s (on 64 bit systems) so if
the drives are connected to a SATA-PCl host adapter then the full throughput of all four
drives cannot be utilized simultaneously. RAID, when striping, generally uses all drives
simultaneously, so the concept can be fundamentally flawed in terms of performance.

The redundancy benefits of RAID are often oversold. It should not be overlooked that RAID
operates at a low level; the whole array appears to the operating system as a disk which
means the raw data is protected. The downside is that if the system performs an operation
that corrupts a key area of the file system, for example the File Table these data changes are
sent to the storage device (RAID) and then copied to the disks (possibly with parities being
calculated). In this situation the data has become corrupted but the RAID system functioned
perfectly. RAID should not be used to replace conventional backups; it provides reasonable
real-time protection against failures but not system or file system errors.

4.3.2: BAsic NETWORK ATTACHED STORAGE

To take RAID access a step further is to use it as Network Attached Storage (NAS) whereby
the array of disks is accessible as a mounted shared device. This may seem practical in the
sense that many machines can access it simultaneously, however most NAS devices are just
computers running basic Linux with hard disks and a network card and they are often no
better than running RAID from a server together with a file server. A ‘normal’ server would
actually give an administrator more control and flexibility.

4.3.3: HIGH PERFORMANCE NETWORK ATTACHED STORAGE

24

Chapter 4: Design 25

There is a hybrid model above RAID and basic NAS (+RAID) which is commonly used at an
enterprise level where high performance and/or high availability is needed; it is also generally
known as NAS. It combines the benefits of RAID while attempting to remove performance
bottlenecks of certain host technologies (such as PCl) and in turn, as a necessary implication
improve network access performance. A dedicated hardware system (disk array host)
provides RAID services with an array of hard drives directly connected to it; the hardware is
designed to operate each disk at full speed. This device can only be connected to by one
machine, but at a very fast rate, often by fibre-channel or Infiniband which can offer speeds
of up to 96 Gbit/sec (more commonly 8 Gbit/sec), possibly well above the speed at which the
RAID array can operate.

So that many clients can access high speed disk arrays they are often connected to a server
running a file server. Network speeds at best are currently about 10Gbit/sec but more
commonly 1 Gbit/sec, which in high performance environments would appear to be a
bottleneck. The solution is to have several high speed network cards in a machine working
together to serve clients on the network; this is known as link aggregation. It does require the
server to have very fast powerful processors, fast RAM and a fast BUS. Although this system
can perform very well, all the requirements to achieve a high data throughput make this
solution very expensive.

4.3.4: DISTRIBUTED FILE SYSTEMS

Distributed File Systems allow many servers to store data but to appear to clients as one disk,
folder or mount point. Unlike NAS RAID systems, access to the data is not reliant on the
reliability of one single server or disk array; furthermore they allow for more cost effective
scalability. As high performance NAS systems require disk array hosts and a server, once a
disk array host is filled to add just one more disk would require another disk array host, and
disk array hosts can cost as much as a decent server. Distributed File Systems can store data
on many or few storage nodes (servers with hard drives); each node can have any number of
disks connected to it which means to increase capacity either a single disk could be added to
an existing node, or to a new node.

In a way, Distributed File Systems can offer a form of RAID 0 and RAID 1 where data stripes
(often called chunks in Distributed File Systems) are stored on different disks (and servers)
and these stripes are also mirrored on to other servers. The striping allows for high
performance; so that many clients can access the same chunk simultaneously on different
nodes which reduces the chances of overloading a specific node. This effectively acts like link
aggregation.

Some Distributed File Systems employ load balancing and fault tolerance. If a file or chunk is
being accessed heavily it will be replicated on to more nodes to spread out the load. To deal
with fault tolerance chunks or files often have a replication count or goal, and if a node goes
down the files or chunks are replicated to other servers to maintain the goal. Network switch
failures can be compensated for by using Link Aggregation though different switches.

Google’s GFS is an example of a distributed file system where the data is split into chunks and
distributed many times over many servers offering high availability and fault tolerance. Like

25

Chapter 4: Design 26

several other Distributed File Systems, the data storage nodes can consist of commodity
hardware. GFS does however require a master server to manage access, file locks and hold
metadata such as the file system hierarchy and map of chunks on the storage nodes. This
master server usually requires slightly better hardware — often more RAM so that the
metadata does not need to be stored on disk to improve performance.

4.3.5: CONCLUSION

With RAID and NAS data storage solutions often being expensive a distributed file system will
be used to store data on the assumption that the capacity of the disk(s) in one server will not
be enough to store information gathered in a large crawl. There are many distributed file
system solutions available for at no extra cost for Linux. During the Implementation the most
promising of these will be tested for suitability and one will be chosen and configured on the
cluster.

4.4: SCALABILITY

So that the Spider can run as quickly as possible it will need to be scalable so that it can be
run on many servers simultaneously. This requires separate applications that can
communicate with each other as well as common practices like multithreading and
asynchronous input and output.

4.4.1: THREADING, SYNCHRONICITY AND ASYNCHRONOUS IO

There are often periods of waiting which a crawler must endure, but so that this doesn’t
waste time it should also be crawling other pages simultaneously. There are three ways to do
this; the first and crudest is to run many processes each crawling as a single thread. This may
consume resources unnecessarily as many processes could duplicate identical structures in
memory. A way to improve resource efficiency is to use one process and either
multithreading or use asynchronous 10. With threading, in theory each thread can request
pages from servers; if one thread is forced to wait the others can still continue without being
delayed. Some synchronization may be required to ensure all resources used are thread-safe.

With asynchronous 10, waiting for 10 results will not block code execution, so several
requests can be made and slow requests just continue to run in the background. However,
unlike threading, if several requests come back at once they will then form a queue and be
processed synchronously. A hybrid method using both ASIO and threading would be most
beneficial.

4.4.2: COMMUNICATION BETWEEN APPLICATIONS

The Crawler will need to talk to the other services which are often going to be running on a
separate server to the Crawler process itself. The only realistic way to do this is over a
network. There are two main protocols used for communicating on an IP network: UDP and
TCP.

The UDP (or User Datagram Protocol) uses stateless queries to provide a mechanism for
answering large numbers of small queries from clients (one of the most common uses of UDP
on the Internet is in DNS services). UDP is considered unreliable as the protocol itself does

26

Chapter 4: Design 27

not support message acknowledgement and therefore it cannot be easily known if the
message has reached the recipient.

The TCP (or Transmission Control Protocol) is almost the complete opposite to UDP. It uses
state based connections and a handshaking procedure to open a connection. Packets that are
sent, are verified, check summed and ordered by the recipient so that any missed packets can
be re-sent. TCP is considered reliable and the protocol’s requirements ensure that the
recipient has accepted the connection and is able to receive data, as well as ensuring
messages have been received successfully.

Communication will be done using the TCP/IP network protocol as its protocol definition and
state based connections provide a reliable communication system. This will require two main
libraries to be created so that they can be integrated easily in to several services, a TCP Server
and a TCP Client. The interactions between server and client will be simple request/response
transactions, where every request expects a response.

Using a request/response model makes the creation of the TCP Server and Client easier,
however complexity is not a significant factor as most interactions require a response, which
will be described later. The TCP Client will have a method called write which will take a
request string, send it to the server, wait for a response then return that as a string. The
constructor will take connection parameters such as a host and a port, and it will
automatically open the connection. The destructor will close the connection and clean up.

The TCP Server will listen on a specified port for TCP connections. When a connection request
comes in it will be accepted and an asynchronous loop will begin. The server will read
asynchronously until a (Windows) new line, represented as “\r\n” or Character Return Line
Feed (CRLF) is received. As the read is asynchronous it should not block any new or existing
connections. When a new line is received any text preceding it is considered to be the
request string. That request is processed on a new thread so that any other asynchronous
reads that come through are not blocked by the current one being processed. As with
asynchronous 10 the process of waiting is non-blocking but otherwise it still only runs on one
thread. An asynchronous write is executed after the processing, sending back the result, and
the call back from the write starts an asynchronous read, completing the loop process. The
TCP Server will take a pointer to a Processor class so the processing method can be
customized to suit the implementation.

4.5: URL CACHE

URLs must not be crawled too often; the Spider must keep track of which URLs have been
crawled so that they are not re-crawled too frequently. For example, they could have a time
associated with them for when they can next be re-crawled.

A simple solution would be to store a list of all URLs that have been crawled and for which
the re-crawl delay has elapsed. When the URL is first crawled it can be added to this list and
once the delay has elapsed it can be removed during a periodic purging process. Every time
the crawler encounters a URL it can check it against this list; if the URL is not in the list it is
crawled and added to the list, otherwise the URL is ignored and the crawler moves on to the

27

Chapter 4: Design 28

next one. Ideally the URLs would be normalized so that different variations of the same one
are not crawled again.

Maintaining large lists of URLs (or any data for that matter) can be resource intensive,
especially if duplicates need to be looked up based on the URL name and old entries need to
be purged based on their date/time stamp. Alternatively, re-ordering lists as data comes and
goes can also be very time consuming. If a list is stored in memory, operations are often very
rapid as jumping between different areas in the memory (seeking) is very fast, however the
limitation is that the list size is restricted to the amount of available memory. In memory data
structures are lost as soon as the program terminates, or if unforeseen circumstances cause
the system they are running on to crash, power off or otherwise loose the contents of the
memory. Storing the lists on a conventionally more cost effective device, like a hard drive
means the list can grow much larger but disk seek time is much slower than memory seek
time making an on-disk list much slower. As keeping track of duplicates is likely to be very
important, storing them in memory may be risky.

A more efficient system regularly used in databases is to use an index to quickly locate a
section of a list where an entry exists or would exist. The index and data list will still change
rapidly and both still need to be ordered in some way, so there are still performance related
overheads but the ability to locate entries quickly is useful, especially when using such a
method to identify duplicates.

Indexes usually partially duplicate data that already exists in the main data list, so it is not
particularly space efficient; however there is a trade-off between space efficiency and
performance efficiency. For rapid look-ups an index could be used without a list, storing the
full entry in a rapidly searchable structure. Common indexes used a B-Trees and B+-Trees
however they may not be best suited to storing whole values. In many cases their
implementations are aimed at partial values, such as the prefix of a data list entry.

A basic option would be to implement an index using a MySQL database as a backend. With
the different data types available for columns, and the ability to add indexes, look-ups should
be suitably fast and all data changes, such as additions and removals are managed
automatically by the database engine. With a quick implementation of tracking lists work on
the crawler, which will rely on these, can begin.

A possibly more powerful option, instead of a database engine is to use a purpose built index.
The system which keeps track of duplicate URLs will need to be capable of checking rapidly if
it already knows of a URL or not. The data structure used to store these will be a Trie. Figure 3
shows a Trie.

28

Chapter 4: Design 29

3
FIGURE 3: A VISUAL REPRESENTATION OF A TRIE FROM WIKIPEDIA, PUBLIC DOMAIN AND CAN BE USED FOR ANY PURPOSE

In Figure 3 the arrows contain key characters and the nodes represent the implied key of the
path. The numbers by the nodes represent values associated with the key name implied by
the path. Though there are several data structures often used for indexes, Tries have several
benefits for this application.

Duplicate prefixes do not waste space in Tries. To ensure this is a benefit, URLs will be stored
in a specific format. This is necessary as they are made of two main parts, the domain and the
path; roots of both meet in the middle.

Domain roots are at the end of the string, a domain technically should end with a dot — where

node of a domain which means domains have a root-last hlerarchy; com is one of the first
level nodes (otherwise known as a top-level domain). Figure 4 shows a tree of domains would
be represented.

O T O ©
O O O O
<z < Zz
o 9 -
£23 223
c Y= o
T _ kel
c v = O
[SETINC) o o O
Qg Z2 Qa2
%) %)
FIGURE 4: A TREE SHOWING SEVERAL DOMAINS AS A FIGURE 5: A TREE SHOWING SEVERAL FOLDERS AS A
HIERARCHY HIERARCHY

29

Chapter 4: Design 30

As previously stated, the dot is the root, com and uk are first level nodes (top level domains),
rdfas and co are second level nodes (co is a second level domain, though rdfas is not as it is
not a common suffix), and so on with both wwws being leaf nodes.

Paths start with the root. In the case of domains, the root is the slash, which is why as part of

DNS lookup and not URL normalization). Figure 5 shows a folder hierarchy is.

Domains have many common prefixes as the list of top (and second) level domains is very
much restricted, so for example, it can be guaranteed that there will be many domains
ending in com but none (currently valid) that end in test. Using this fact and the knowledge
that Tries eliminate duplicate prefixes, the domain string will be reversed so that the dot root
is at the beginning, making the whole path a root-first hierarchy.
the root is at the beginning and the hierarchy progresses from left to right. Note the http
prefix is dropped as the Spider will only support http resources so it is unnecessary to store it.
As a Trie indicates a character at each level and not a chunk of a string the whole domain is
reversed, not just the structure meaning that domains sharing a common suffix will end up
sharing a common prefix, which will then not be duplicated. An example is shown in Figure 6.

30

Chapter 4: Design 31

Root ‘
Domain @ G

Folder / Path 0 u e @

|
(www.test.com/page) (www.last.com/link) (www.last.com/css) (dev.test.co.uk) (www.test.co.uk)

FIGURE 6: SEVERAL URLS SHOWN AS A FULL HIERARCHY WITH REVERSED DOMAINS

Clearly the tree structure grows quickly, and even short domains take up lots of space when
visualized. Each node represents an element in the Trie. It has a parent and it potentially has
peers and children. In this implementation there is no need to recurse up the tree, so parent
elements do not need to be stored. Each node will have an ID, starting from 1; it will point to
its first child and its next peer. A pointer to 0 will represent a null node, in other words no
node.

Nodes at each level will not be sorted; there are several reasons for this. For sorting to be in
any way effective the number of nodes at the level would need to be stored. However even
knowing the number of nodes on each level does not indicate the distribution if they are
sorted, for example if there are 10 nodes, they could be a to j continuously, or g to z, or some
other set and if looking for m for example, jumping halfway through (as m is halfway through
the alphabet) then searching left or right based on the value at that point will take just as
long in both cases. Scanning in both directions will require each node to know its next peer

31

Chapter 4: Design 32

and last peer and the ability to jump to a point will mean the parent node will have to know
all the IDs of its children. This poses several issues which are discussed below. If there is no
list of children then the nodes will have to be scanned to find the middle, following the next
or last peer pointers, which is no faster than just searching for that node in an unsorted list.

Node entries need to be stored in blocks of a fixed size so that there is no need to expand or
shrink the block. This is because making extra space contiguously or making use of free space
can require data to be shifted which is extremely costly in hard drive operations. Storing a list
of child nodes, as mentioned in the previous paragraph would either require space to be
reserved for the list, or for the node’s entry block to be expanded. There are two ways to
expand the block, either all data after the block would need to be shifted down to make
space, or the data would be added at the end of the file and it would need a pointer from the
original part to the part at the end. This fragmentation of data will severely degrade
performance as many users of a Microsoft file system will be happy to complain about.

In summary a Node needs to store the character itself, its next peer, its first child and
whether or not it is terminal. Terminality indicates that from the root to the terminal node it
is a full URL that has been seen before. As the blocks are of fixed size and are appended to
the data stream their ID can be inferred from the position and intuitively the position can be
calculated from the ID. Each pointer will be 64 bits giving a Ilimit of
18,446,744,073,709,551,616 entries which is likely to be far more than needed or even
feasibly storable. 64 bits is 8 bytes, a terminality Boolean is 1 and a character is 1 making a
node block 18 bytes. Compressed pointers will not be used as they will require data shifting
which will cause the same issues discussed in the previous paragraph.

Each Trie entry block will be structured as follows:

nnnnnnnnccccccccevt

Where nnnnnnnn is the next peer |ID, cccccccc is the first child ID, v is the value (character)
and t is the terminal indicator. The position of the block itself implies its own ID, as they start
at 1 a block at offset 0 would have ID 1, a block at 18 the ID would be 2, and so on.

For the following example short, unrealistic (or invalid) domains will be used so that the
visualizations are smaller and more readable. As all domains end with a dot it means it is a
root that will be common to all Trie entries after they have been rearranged. The URLs

Figure 7.

32

Chapter 4: Design 33

FIGURE 7: FOUR URLS SHOWN AS STORED IN A TRIE

The data structure, comprised of node entry blocks could be visualized in progressive steps as
shown in Figure 8; however the order and arrangement of nodes may vary based on the
order added.

7 > 7 2 (¢ 7 >

1

g
bl b
bl

10 5

e PO

6 66 0o

11 6 15 11

i
o

FIGURE 8: PROGRESSIVE STEPS SHOWING HOW FOUR URLS WOULD BE STORED IN A TRIE DATA STRUCTURE

Each circle represents a node entry, the value in the circle is the node value (character), the
numbers adjacent to the nodes are the inferred IDs and the numbers on the arrows are the
pointer values. A downwards arrow represents a first child pointer, and an arrow across
represents a next peer pointer. All nodes have both pointers but they will simply point to 0 if
there is no child or peer and so they are not shown in the diagram. The bold circles represent
terminal nodes.

4.6: URL QUEUE

A system is needed to tell the crawler processes which URL to crawl next. There are several
ways to store such a list; a quick implementation would be to use a database system which
would allow specific data types to be associated with columns. A performance increase may
be offered by a more customized solution, tailored to utilize storage in memory, on disk or
both

33

Chapter 4: Design 34

As outlined in the requirements, the URL queue affects the politeness of the crawler. If the
gueue is sending out too many URLs on the same server (or with the same domain) that
server or site will get over-crawled. Essentially the solution is not to processes the list of URLs
to-crawl sequentially, and analyse the URLs to ensure that the domains are also not crawled
sequentially. The most effective method is to use a round-robin approach when considering
the URL’s domain.

For example a list containing: Would be best parsed in the order:
= http://www.1l.com/pagel = http://www.1.com/pagel
= http://www.1.com/page2 = http://www.2.com/pagel
= http://www.1.com/page3 = http://www.3.com/pagel
= http://www.2.com/pagel = http://www.1l.com/page2
= http://www.2.com/page2 = http://www.2.com/page2
= http://www.2.com/page3 = http://www.3.com/page2
= http://www.3.com/pagel = http://www.1l.com/page3
= http://www.3.com/page2 = http://www.2.com/page3
= http://www.3.com/page3 = http://www.3.com/page3

This is so that all domains are crawled as infrequently as possible. Every time a URL is added
to or removed from the list the order would need calculating to maintain the round-robin
layout to prevent over-crawling. In practice this may not be possible as it could become very
resource intensive as the list grows.

The standard Trie (discussed in the previous section) can be taken further and can be used as
a round-robin based URL queue, this variation has been given the name XTrie (Extreme Trie)
to differentiate it from the original. Each XTrie entry block will require two more data values
to be stored, a 64 bit pointer called the round robin pointer and the terminal byte will now
store more than just terminality. If a node is terminal it can also have the state ‘to be done’.
Any node can have the state ‘a child needs to be done’. All this information is encoded in the
terminality character as previously only 1 of 8 bits were used. The XTrie could now be used as
both a URL Cache and a URL Queue.

Every time a URL is added, the last node again will be terminal to identify that it is a full URL
but it will also be marked as to-do (or to be done). The recursive algorithm will work up the
tree making sure all parent nodes have the state inherited to-do (or a child needs to be done).
Once this is done a quick check at any level of the XTrie can tell whether or not a branch has
to-do URLs on it. The round-robin pointer is similar to the first child pointer, except it does not
point to the first child, just the next child to be used.

The following pseudo code describes how finding a URL to be done from the XTrie is carried
out:

34

Chapter 4: Design 35

//Starting Point
CurrentNode = RootNode
NextNode = CurrentNode.RoundRobin

//Loop until a Terminal Node with To-Do is found

While NextNode Not (To-Do And Terminal)
If (NextNode == Null)
NextNode = CurrentNode.FirstChild

Else
NextNode = NextNode.NextPeer
End If
If (NextNode == CurrentNode.RoundRobin)
Error “This situation should not occur!”
End If

//If Inherited To-Do Move down a level in the XTrie

If NextNode Has Inherited To-Do
CurrentNode.RoundRobin = NextNode.NextPeer
CurrentNode = NextNode
NextNode = CurrentNode.RoundRobin
End If
End While

Upon leaving the While loop NextNode should be a terminal node which needs to be done.
The URL can be found by logging the nodes values as the algorithm recurses down the XTrie.
Each time it goes down a level in the XTrie the round-robin pointer is updated to the next
child node for the next time it is used.

Once a node is found that is terminal and to-do then the to-do flag must be cleared which
may require inherited to-do flags to be cleared too. If the node had inherited to-do and to-do
it means it still has children which need doing, in this case no recursion is needed to change
parent nodes as this also implies they have children that need doing. Otherwise, if de-flagging
the node will potentially cause the parent to change, all peers have to be checked for explicit
or inherited to-do. If the result of this check results in a change of state for the parent then
the parent is the current node and the check starts all over again, potentially until the root
node is reached. This ensures all inherited to-do flags are correct, and if they are the ERROR in
the pseudo code should never be reached.

The same (unrealistic) example URLs described in the Trie would be built up in an XTrie in
steps as in Figure 9.

Chapter 4: Design 36

7 e Y] —>

N $ \ Y $ L
4 4 9 4 e)13 X)9 4 e)13 9
14 10 14 10
v v v b4
y
5 4 5 4 \ 10 5 ":‘)14 ‘?10 5 4 ‘?14 ‘:/PIO
11 15 11 6 15 11
g & - N : |) g -0 ®
6 6 11 6 15 11 6 15 16 11

FIGURE 9: PROGRESSIVE STEPS SHOWING HOW FOUR URLS WOULD BE STORED IN AN XTRIE DATA STRUCTURE.

As before, each circle represents a node entry, the value in the circle is the node value
(character), the numbers adjacent to the nodes are the inferred IDs and the numbers on the
arrows are the pointer values. A downwards arrow represents a first child pointer, an arrow
across represents a next peer pointer and a thick red arrow indicates the round-robin pointer.
All nodes have all three pointers, they will simply point to 0 if there is no child or peer and so
they are not shown in the diagram. The bold circles represent terminal nodes. Dark shaded
nodes have a to-do flag and light shaded nodes have inherited to-do.

A URL requested would follow the path of red arrows in the previous diagram (green and
dashed in Figure 10) from the root at ID 1 to ID 6. Inherited to-do and to-do markers would be
removed and the round-robin pointers would increment to the next child where they are
encountered and if another child exists. Light grey arrows are round-robin pointers that still
exist but will never be followed, unless a new URL is added down that path (see Figure 10).

it it
30 8 3 8
dp B e B
4: 13 9 I::> 4 13 9
v v 1 v oW v
‘¢ D SO 7
5: 14 10 5 14 10
1 R A
6: 15 11 6 15 11
d -0 © Y %0 ©
6

-
«a
-
=Y
-
s
o
=
«
-
=Y
=
s

FIGURE 10: STEPS SHOWING HOW URLS ARE QUEUED AND EXTRACTED FROM AN XTRIE

Now for the next URL request a completely different path will be taken, ensuring no two
same domains, or any part of the path where this is a branch, is returned in successive
requests. The following two URL requests are illustrated in Figure 11 in the same format:

36

Chapter 4: Design 37

=
—(~Jex
=
S
~
=
5

-
&

P
&
7
&

-
&
>
=
@
-
&
>

FIGURE 11: FURTHER STEPS SHOW HOW URLS ARE QUEUED AND EXTRACTED FROM AN XTRIE

At some points the round-robin pointers would have incremented then moved back to the
start, these are not shown. Though this system may seem complicated, it should be very
successful at ensuring that over-crawling does not exist when there are other domains
available in the queue. This service will actually run as two TCP servers, one to accept
incoming URLs and one to accept requests for a new URL to crawl.

4.7: RoBoTs CACHE

Staying out of restricted areas is a very big part of a crawler’s politeness and was discussed in
the requirements. It is relatively easy to deal with as there is a system in place for informing
crawlers of where they are and are not allowed to go. The robots file, found at the root of the
site. This can be parsed the first time the domain is accessed and a list of inaccessible URLs
can be generated for that domain, then when the crawler is instructed to access a page on
that domain it can check whether to proceed or not. To minimize bandwidth overhead the
robots file could be cached for a certain period of time, but care would need to be taken to
make sure it is not cached for too long.

There are three parts needed for the robots system, a parser for the robots file to determine
which rules apply to the Spider and then an interpreter to decide whether a specific URL is
blocked, and finally a cache so that the robots file does not need to be retrieved for every
page, just once every so often.

The robots parser will take the raw robots data and the User Agent of the Spider. It will then
calculate which rules apply to its User Agent, and represent them as a compressed format
string. This string can then be stored in the cache and passed to the robots parser in the
future, meaning that minimal data is cached and the robots file is only parsed once per fresh
retrieval. Once the robots parser has the relevant data it will be able to calculate which URLs
are allowed to be crawled and which are not.

The robots parser will handle the Disallow command, as specified by the robots exclusion
standard, but also the Allow command. When there is ambiguity about which rule applies the
most specific or longest match will be used.

The Robots Cache will run as a TCP Server. When the crawler needs to check a robots rule it
will request the compressed robots string from the server and if needed, the server will fetch
the file and process it to extract the string which will be cached and sent. However if a cached

37

Chapter 4: Design 38

version already exists it will send the cached version. When the Crawler receives the data it
will use the parser again to check whether the URL it is about to crawl is allowed. The Robots
Cache will store data in a MySQL database primarily, however if time permits a dedicated
structure will supersede it.

Web masters often like to know why their site is being visited, to identify the crawler it will
have a descriptive User-Agent which will state that is the RDFaS Crawler, with a link to a page
describing the Spider and its politeness policy.

4.8: CRAWLER

The crawler will implement the design outlined in the overview section (4.1). The crawling
stages in the overview will be called in a loop; however some stages (namely indexing) could
block the process for a substantial amount of time. To allow each machine to crawl rapidly
each crawler process will start many threads.

At some point the crawler might have to stop, either by choice (a stopping condition) or
because of resource limitations (such as disk space). If the desire is to simply crawl as much as
possible before resources are exhausted then the crawler stops when it runs out of the most
limited resource, for example disk space. In this case it should not be too difficult to predict
roughly how many pages will be included in the crawl and how long it might take. Another
such method would be to stop after a specific number of pages have been crawled, or after a
certain amount of time.

An indirect limit on pages crawled is to restrict the depth. The seed page has depth n. Every
page found from the seed page has a depth of n — 1. Every page found from those pages have
a depth of (n — 1) — 1, n — 1 being the depth of the page they were discovered on, and so on.
Once the depth of a page reaches zero it is still indexed, but any links found on it are ignored
and are not added to the crawl queue. Depth limits will be used so that sites can be explored
a specific distance from the seed site(s).

4.8.1: REQUEST URL TO CRAWL

The crawler’s main loop starts by determining which URL it should crawl next. To do this it
makes a request to the URL Queue over a TCP connection. The URL Queue then sends back a
URL, if one exists and the depth of that URL, so that when subsequent URLs are discovered
their new depth can be calculated.

4.8.2: DOWNLOAD PAGE

There are three areas of the Spider which require pages to be downloaded. The crawler itself
needs to download pages, as does the robots cache sever (described in detail in section 4.7)
and submitting to the Triple Store uses a HTTP POST method which submits the data as a
request and downloads the response, this is discussed in section 4.9.

C++ does not have any built in libraries to handle downloading content from web servers, but
it can manage sockets on a low level, or alternatively the 3™ party B