
an RDFa Spider

RDFa Web Spider by Paul Ridgway
Supervised by Fabio Ciravegna

Aim: to crawl the web extracting RDFa from pages

A Crawler Thread The Crawler Process The Crawl Cluster Monitoring the Crawl

What is RDF and RDFa?

Querying the Triple Store

Storing RDF Data - Triple Stores

Parsing Web Pages to extract RDF The URL Cache - Trie Implementation The URL Queue - Paged Queue

The Resource Description Framework (RDF) is a general method
for the description or modeling of information that is
implemented in web resources. RDF statements are represented
as subject-predicate-object triples.

RDFa is an extension to XHTML markup which allows authors to
turn existing human-visible test and links into
machine-readable data without repeating the content. XHTML
attributes are used to represent RDF triples.

The following HTML shows a heading with the content “Ivan
Herman”, which is the name of a person. However at face value,
a computer would not be able to tell that this is a name.

An attribute can be set for the heading element, giving the
content a property, in this case “foaf:name”:

The pre�x before the colon is the namespace and the su�x is the
property. The foaf is linked to the foaf ontology, which is used to
represent relationships between people and the name property
indicates that the content represents the name of something.

<h1>Ivan Herman</h1>

<h1 property="foaf:name">Ivan Herman</h1>

Start

Request URL to Crawl

Check Robots rules

Download the Page

Remove Duplicates

Queue Unique URLs

Parse with pyRDFa

Upload triples

Send to ParserExtract Links (URLs)

Finish

The Internet

Sesame

Robots Server

URL Queue

URL Cache

Thread Steps External Calls
Requests to resources running on

other servers or networks.
The thread loops continuously until the Crawler

Process is instructed to stop.

Each Crawler Process by default runs 20
crawler threads continuously until it receives
an interrupt signal, at which point it joins all
threads after they �nish their current loop.

All the crawlers make requests to common external
services running on other servers and networks.

The URL Queue manages URLs to be crawled
and the URL cache identi�es duplicate URLs so
that they are not re-crawled. They require vast
resources and run on the most powerful server.

So that politeness rules can be adhered to the
crawler must often check a site’s robots �le.
The Robots Server caches this data to
minimise bandwidth.

The 20 Crawl Servers

The URL Cache & URL Queue

The Robots Server

Sesame
Sesame is the Triple Store used to archive the
RDF data extracted from web pages during
crawls. It allows for queries and logical
reasoning to be applied to the data.

The server residing between the rest of the
cluster and The Internet is the Master Server. It
provides distributed service lookup, common
settings, routing and DNS resolution.

The Master Server

Twenty of the available servers run the crawler process
so there are usually 400 Crawl Threads running.

A 24 server cluster is used to run the Crawler
System. Each server is installed with Ubuntu 9.10,
GCC C++, Python and pyRDFa. They are connected
by a 100MBit network. Data is stored on the MFS
Distributed File System for redundancy.

24 Server Cluster

Screen Real-Estate
Almost 10 million pixels of screen space are needed to
monitor all operations of the Spider - thats about 12
standard 15” screens.

The Importance of Monitoring
Crawling is a very delicate process, but crawling rapidly requires
even more care and control. The Spider is capable of crawling at
over 300 pages per second, if all these requests are directed at one
server it could overload the server and deny access to legitimate
users. Even though politeness rules should prevent this, errors and
mistakes often exist so the Spider needs to be carefully observed,
at least until it is proven to be stable and polite.

RDFa information when included in web pages is very bulky
as not all of the extra XHTML from the page is needed. The
ideal representation is as RDF triples which extracts the
subject, predicate and object from the XHTML. Triple
hierarchies can be inferred where the object of one triple
matches the subject of another.

W3C’s Distiller (also known as pyRDFa) is used for parsing.
XHTML + RDFa

RDF

The URL Cache analyzes URLs from the Crawler to determine
whether or not they have been seen before and therefore
whether or not they have been Crawled before or queued to be
Crawled.

The cache is a large index of URLs, stored as a Trie (a form of tree
structure). Duplicate pre�xes are eliminated due to the
hierarchial structure.

Unforturnately the Trie su�ers from a performance �aw. Trie
nodes are added sequentially as they occur from requests but
often read in the order of the hierarchy meaning lots of drive
head jumps (or seeks) will be required adding varying levels of
overhead. On average a seek takes 10ms meaning a 100
character URL will take 1000ms (1 second) to check.

RDF data is conventionally stored in type of database system
called a Triple Store. Some triple stores have a native storage
backend tailored at storing RDF and performing reasoning,
others use existing database engines like MySQL. Sesame, the
Triple Store used for this project, provides access using Tomcat
for adding and querying data over HTTP.

Triple Stores can be queried in a simple manner to
extract information or more complexly to run logical
reasoning over the stored RDF triples.

A language called SPARQL which loosely resembles
SQL has been developed for queries.

The following query requests the names and
corresponding emails of people.

It is important to remember that the properties
name and email only actually correspond to a name
and email because of their de�nition in the foaf
ontology.

PREFIX foaf:<http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
 ?person a foaf:Person.
 ?person foaf:name ?name.
 ?person foaf:mbox ?email.
}

m

f

.

t

s

a

g

u

e

o

t

e

s

y

x

.

kbl

o

c

.

3

2

1

m

f

.

t

s

a

g

u

e

o

t

e

s

y

x

.

kbl

o

c

.

3

2

1

The URL Queue is a crucial part of the system, it tells the Crawler
Threads the next URL to crawl but also determines the order in
which URLs are crawled to avoid over-crawling any particular
site.

URLs could come in to the queue in any order, it is likely many
from the same site will be discovered in a short space of time.

As URLs enter the queue they are stored in a Temporary Page
until the page becomes full. Once it is full they are rearranged
into a polite, non-sequential order (based on the domain) and
saved in a Queue Page. Any domains that occur too frequently
are put back in a Temporary Page to be thinned out during the
next processing cycle.

The ideal diversity of a Queue Page (the limit on the most
frequent domains) is automatically tuned based on recent
crawling and speed statistics.

The queue is broken down in to pages so that data can be read
and written in sequential chunks and each page is always small
enough so that it can be processed in memory.

