
i

i

COM3010 - RDFA WEB SPIDER
Title: RDFa Web Spider

Name: Paul Ridgway

Supervisor: Fabio Ciravegna

Module Code: COM3010

Date: 4th December 2009

This report is submitted in partial fulfillment of the requirement for the degree of Master of

Software Engineering in Computer Science by Paul Ridgway.

ii

ii

SIGNED DECLARATION
All sentences or passages quoted in this report from other people's work have been specifically

acknowledged by clear cross-referencing to author, work and page(s). Any illustrations which are not

the work of the author of this report have been used with the explicit permission of the originator

and are specifically acknowledged. I understand that failure to do this amounts to plagiarism and will

be considered grounds for failure in this project and the degree examination as a whole.

Name: Paul Ridgway

Signature:

Date: 4th December 2009

iii

iii

ABSTRACT
Current web 'standards' formalize formatting and provision of information on the Web, but little of

this information can be put into context by a machine without heavy analysis. A proposed html

extension called RDFa allows the content creator to specify the type of data on a web page which

implies or specifies the context and relationship of this data. This allows automated processes to

potentially discern the meaning of the information. There are many search engines for several

different types of media, but most commonly they allow the user to search content on the Web,

return results based on a relevance match which is often done by the frequency in which the search

term appears in the document. The aim of this project is to index pages which contain RDFa data for

searching, tackling issues involved with crawling and indexing large numbers of pages and enormous

amounts of data.

iv

iv

CONTENTS
Signed Declaration .. ii

Abstract .. iii

Glossary .. vi

Chapter 1: Introduction .. 1

Chapter 2: Literature Survey ... 2

2.1: The Structure of the Web .. 2

2.1.1: The basics .. 2

2.1.1: How big can it be? ... 2

2.1.2: Browsing it all .. 4

2.1.3: Search Engines .. 5

2.1.4: Getting a page from the web .. 5

2.2: The web, in context.. 7

2.2.1: RDF and RDFa .. 7

2.2.2: Searching content vs. context .. 8

2.2.3: Storing RDFa Data ... 8

2.3: Crawling and Indexing .. 8

2.3.1: General infrastructure .. 8

2.3.2: Crawling and Indexing in Detail .. 9

2.3.3 Overall Performance .. 9

2.3.4: Bandwidth ... 10

2.3.5: Storage .. 10

2.3.6: Data structures.. 11

2.3.7: Politeness .. 11

2.4: Distributed Computing... 13

Chapter 3: Requirements and Analysis ... 14

3.1 Overall Structure ... 14

3.2: Crawler Structure ... 15

3.2.1: Crawlers .. 15

3.2.2: Robots Lookup .. 16

3.2.3: Insert and To Do .. 16

3.2.4: The URL Cache .. 17

3.2.5: Data Structures ... 17

3:3: Indexer Structure ... 19

v

v

3.4: Storage ... 19

3.5: Searching .. 20

3.6 Evaluation ... 20

Chapter 4: Progress ... 21

4.1: Hardware and Infrastructure ... 21

4.2: Software and Tests... 21

4.2.2: rws_common .. 21

4.2.3: rws_heartbeat_service ... 22

4.2.4: rws_Cache ... 22

4.2.5: rws_robots .. 22

4.2.6: rws_sql_insert ... 22

4.2.7: rws_todo ... 22

4.2.8: rws_crawler... 22

4.2.9: System Manager ... 23

Chapter 5: Conclusions and Project Plan .. 24

5.1: Progression Plan... 24

References .. 25

FIGURES
Figure 2.1 - A graph of the effective cost per GB of hard drive storage against time 3

Figure 3.1 - The basic structure of the RDFa Spider. ... 14

Figure 3.2 - Crawler Connectivity. ... 15

Figure 3.3 – Trie Structure. ... 17

Figure 4.2 –System Manager .. 23

vi

vi

GLOSSARY

CRAWLING

 Crawling the Web is the process of automatically and methodically browsing the web.

(FORWARD) INDEX

 An index is an ordered list mapping an identifier to some data.

INDEXING

 Indexing is the process of parsing data and creating an index from it.

THE INTERNET

 The Internet is a global system of interconnected computers and networks.

IP (INTERNET PROTOCOL)

The Internet Protocol (IP) is a protocol used for communicating data across a packet-

switched internetwork using the Internet Protocol Suite, also referred to as TCP/IP.

RDF

 The Resource Description Framework is used to model information used in web resources.

RDFA

The W3C Resource Description Framework - in – attributes recommendation adds RDF

attribute extensions to web pages.

REPOSITORY

 In the context of this paper a repository is a data store for web pages.

REVERSE INDEX

 A reverse index is a list mapping data tokens to the original set of data.

TCP

The Transmission Control Protocol (TCP) is one of the core protocols of the Internet Protocol

Suite.

THE WEB

 The Web is a system of interconnected hypertext documents on the Internet.

 Chapter 1: Introduction 1

1

CHAPTER 1: INTRODUCTION
The Web has grown exponentially since its conception and it is now extremely large. Finding

information on The Web without any assistance is near impossible unless you have prior

knowledge of its location, and this has ensured that search engines will always be well used

and make an enormous contribution to the usefulness of The Web. A search engine must first

(and repeatedly) collect data for its index, as the index is searched when a search engine is

asked to find information.

This collection process has two parts, first The Web is crawled, and then the data retrieved by

the Crawl is Indexed. Crawling is a process where a crawler repeatedly downloads a page,

identifies all links on it, downloads those pages, identifies all their links, and repeatedly

harvests pages until it has acquired every linked page it can find. These pages are all stored so

that they can be Indexed.

The pages downloaded are then Indexed, each page is parsed and the visible content is

located. All individual words in the page are identified and counted so that a forward index

can be created where each page has a list of words and counts. There is also a reverse index

for each word which is a list of all the pages in which that word appears. Different search

engines will vary their Crawling and Indexing procedures so that the resultant data is tailored

to match the features of the search service provided.

The majority of search engines create their index from visible page content and little more,

however there are new standards emerging, called RDF that allow the context of information

on the Web to be specified. The aim of this project is to index pages that are annotated with

RDF data to potentially allow for a detailed search index and interface.

Crawling for RDF data will require crawling every page, but only storing some of them,

namely the ones containing RDF mark-up. There are several key issues with crawling and

indexing amount of data, in this case the Web. This project will attempt to tackle these issues

with practical scalable solutions.

 Chapter 2: Literature Survey 2

2

CHAPTER 2: LITERATURE SURVEY
This literature survey examines the infrastructure and topology of the World Wide Web,

drawing particular reference to finding, indexing and searching for information with and

without contextual enhancements.

2.1: THE STRUCTURE OF THE WEB

The World Wide Web (the Web) is an enormous collection of interlinked documents which

reside on servers connected to the Internet. There are several different services that allow

the Web to exist on The Internet.

2.1.1: THE BASICS

In the crudest sense, The Internet is a very big network of computers. In reality it is lots of

networks linked together to make The Internet. The words “web” and “internet” are often

mistakenly used in everyday language to refer to the “Web” but they are not the same thing.

The Internet is a global network, whereas the Web is the collection of web pages that are

accessible over the Internet for a Web Server.

The Internet uses a numerical addressing system which allows computers to connect directly

to each other. The system currently in use (called IPv4) which is of the format where

a, b c or d are integers between 0 and 255 (with some restrictions), it is basically a 32 bit

address. This means the max number of available addresses is

without restrictions, in practice there are fewer.

The Internet has now become so big that about 10 years ago a specification for a new IP

Protocol (IPv6) was proposed (Network Working Group, 1998). An IPv6 address is of the

format where each pair is a hexadecimal

representation of an 8 bit number making the IPv6 a 128 bit address, giving an address space

of – which should last much longer than IPv4.

The IP protocol is merely one of the technologies of the giant infrastructure that is The

Internet and the Web. The Web (viewing content, at least) relies on two main types of

server, HTTP and DNS. DNS stands for Domain Name System and it is a mechanism for

resolving domain names (used for memorability, structure and order) to IP addresses. For

example, when a user tries to browse the page at www.google.com the web browser asks the

ISP’s name servers to resolve www.google.com and it will look it up and return an IP so the

computer can make a direct connection. DNS is a hierarchical system and one Name Server

often requests information from another to resolve a query, but the detail on how this is

carried out is beyond the scope of this paper.

Revisions and updates in the network technology behind the Internet and the Web could

provide problems for web spiders and indexers if they are not able to keep up with these

changes, and gracefully operate during transition periods.

2.1.1: HOW BIG CAN IT BE?

There are currently well over 1.25 trillion (1,250,000,000,000) unique linked URLs on the

Internet (Google, 2008) (Majestic-12, 2009). There are bound to be more pages on the

 Chapter 2: Literature Survey 3

3

Internet as some will not be linked to others, making them hard to find, and others will be

behind password protected areas, or prohibited by spider politeness rules such as robots files

(which are discussed later).

The web contains a truly vast amount of data, for example (Building Nutch: Open Source

Search, 2004) assumes that a single web page is on average 10 KB in size, based on this

assumption 1.25 trillion pages would take up 11.3 PB if they were stored in an uncompressed

format. That paper is 5 years old, with advances in network technology, the average internet

connection is now much faster and it is clear that web pages are more content rich now with

images and other included files such as JavaScript and CSS includes, making the overall

average size of web pages larger.

The Google homepage, which is renowned and now patented (Lardinois, 2009) as a very

simple user interface requires 50 KB of bandwidth, a Google search result is 75 KB and many

other reasonably simple pages require well over 100 KB. This could put the disk cost of

storing the pages at 113 PB, but this is still an estimate as it excludes the space needed for all

the streaming video, image hosting, content distribution and all the other rich content

providing sites.

In 1998 Google had an index of 24 million pages (Brin, et al., 1998) and in the space of 10

years it has risen to well over 1 trillion. Google store both copies of the pages, and reverse

indexes (discussed later) for all words in the page. Their 24 million page index of 1988, with a

compressed repository of all pages downloaded was 108.7 GB, assuming the data is still

stored in a similar format with the same level of compression, their new index of today’s web

would be around 41,000 times larger, which would be 4.25 PB. This estimation does not

compensate for the increase in internet connection speed and page size. Their paper

acknowledges that as computing performance increases they could easily use heavier and

more intensive compression to reduce their index without having to worry about the

performance overhead.

These statistics are based on research and are not definitively accurate but they are educated

estimates. They are also used later and their use implies this warning.

 Chapter 2: Literature Survey 4

4

Figure 2.1: A graph of the effective cost per GB of hard drive storage against time (Matthew Komorowski, 2009). Permission

acquired.

There are two main factors that have contributed to the exponential growth of the Web.

Firstly, the number of internet users has grown by almost 5 times than it was in 2000, and

many of these users will be contributing to the Internet in one way or another, for example

by making websites, setting up businesses and participating in forums. The other factor is the

cost of disk space. When Google released their first big index in 1998, disk space cost about

$50 per GB, whereas today the rate is about $0.07 per GB (Figure 2.1) (Matthew Komorowski,

2009). With disk space getting exponentially cheaper there is less pressure on service

providers to clean up old content to save space; instead many sites now have archives of

older versions of pages or documents. A prime example of archiving is archive.org (also

known as The Wayback Machine) who have been archiving copies of public web pages since

1996, and they claim to have over 3 PB of storage for this task (Internet Archive, 2009).

The size of the Web as a whole is a factor that must be taken into consideration when

attempting to crawl all or part of it. If a front-end search style interface is being provided then

storage of the data for processing and referencing would require serious consideration, but

even if this is not the plan, downloading and parsing the data will still require lots of

bandwidth, time, processing and power. All of these issues will be addressed later on.

2.1.2: BROWSING IT ALL

The estimated number of internet users is just under 2 billion (Internet World Stats, 2009)

and the majority of those users will be trying to find information in one way or another. If

each user was assigned an equal portion of individual URLs they would have over 625 each,

and manually searching those pages would still take about a day if the user spent a couple of

minutes on each. Furthermore, if their search was completed, that small one two billionth of

 Chapter 2: Literature Survey 5

5

the Web may not have contained the information they were looking for, rendering their

effort useless.

2.1.3: SEARCH ENGINES

It is a fact that the Web is huge, and that no one user could easily find information on it

unless they had prior knowledge as to its location. That is why search engines are essential to

the everyday use of the Web and why almost half of the top 20 websites ranked by popularity

are search engines (Alexa, 2009). Search engines provide a crucial gateway to the Internet,

allowing users to enter a short query and frequently find the information for which they were

looking.

Search engines can only truly be considered useful if the user is able to find the information

or site that they are looking for fairly quickly. It is a common belief that most users of a

search engine will only look at the first page or two of results, which is usually the first 10 or

20 results. This means that the algorithms used to sort the results must be very adept at

ranking the entries in their indexes in terms of relevance to the user's query. This has always

been a problem for the operators of search engines as for as long as search engines have

been around, there have been people trying to mislead them and distort the results by using

various tactics to promote their sites for specific queries that they may not actually be related

to, to increase traffic, sales or to capitalize from advertising.

2.1.4: GETTING A PAGE FROM THE WEB

Retrieving a web page from the Internet is a process that requires multiple steps, only

application layer protocols and interactions will be considered:

1. Parse the URL

2. Resolve and IP Address for the domain

3. Connect to the web server

4. Send the Page Request

5. Wait for/accept the Response

Parsing the URL
Web Page URLs are of the format

The http prefix indicates that the resource is to be retrieved from a web server (other

examples are ftp). The server element can be an IP address or a resolvable domain name.

The :port section is optional, a http prefix implies a default port of 80 but it can be specified

that the web server is running on a different port.

A URL can omit the /folder/page section, if this is the case a trailing forward slash will be

added as / is the location of the default page at the root of the site. The /folder/page section

is the path to the page.

Resolve the IP Address for the Domain

 Chapter 2: Literature Survey 6

6

If the server value is an IP address then this step can be skipped, otherwise the computer

performing the request must contact the local name server (which is usually specified by the

IP configuration of that machine) and ask for the domain to be translated to an IP address.

Connect to the Web Server
The computer now needs to connect to the server using the IP address and port specified (or

80 if there is no port specified). The connection is done using the TCP protocol. Upon

successful connection there is no ‘welcome message’ as with some protocols, the client is

free to send the request.

Send the Page Request
The client now needs to format and send the page request. This tells the server the domain

name requested, and the page. Optionally, other information can be sent like form variables,

cookie settings or restrictions on content type or language.

A basic request is formatted as follows (Network Working Group, 1999):

GET /folder/page HTTP/1.1

Host: www.domain.com

This simple request merely asks for a page, specifying no restrictions and without any cookie

data. Without cookie data advanced features such as sessions cannot be used. Cookies and

other restrictions are conveyed and specified in the similar means to the ‘Host’ attribute, in

the format:

Property: value

The first line of the query first states the method, in this (and many cases) ‘GET’ followed by

the path to the document, relative to the server root, and finally the HTTP version expected

of the format of the exchange. The server can reject unsupported protocol versions. The

request is finished with a blank line, technically a ‘character return, line feed’. Some methods

allow or require data after the blank line, as a spider will upload no data this does not need to

be considered.

After a request the connection can remain open if requested and supported by the server. A

property called ‘Connection’ with a value set to ‘close’ will cause the server to close the

connection after a response. This is often used in simpler request mechanisms, especially if

pages are not requested sequentially and repeatedly from the same site.

Wait for/accept the Response
The client must now wait for the response from the server, if the connection was successful

then it is more likely a response will be received, however if the server is inundated with

requests there could be a long, or indefinite delay if the request goes astray. This may cause a

timeout to occur and pass an error message or page to the user. The following is a very basic

request and response after a request for http://www.google.com/robots.txt (the response

has been truncated from a longer list of robot control statements).

Request:

 Chapter 2: Literature Survey 7

7

GET /robots.txt HTTP/1.1

Host: www.google.com

Response:

HTTP/1.1 200 OK

Content-Type: text/plain

Last-Modified: Wed, 18 Nov 2009 01:25:08 GMT

Set-Cookie:

PREF=ID=7b3a862b4b1b0006:TM=1258926213:LM=1258926213:S=RrIw8wOm

t0iMrPbT; expires=Tue, 22-Nov-2011 21:43:33 GMT; path=/;

domain=.google.com

Date: Sun, 22 Nov 2009 21:43:33 GMT

Server: gws

Cache-Control: private, x-gzip-ok=""

X-XSS-Protection: 0

Expires: Sun, 22 Nov 2009 21:43:33 GMT

Transfer-Encoding: chunked

User-agent: *

Disallow: /search

The content of the response starts with the line ‘User-agent: *’, and it always starts after the

blank line which follows the header – regardless of the type of data requested.

2.2: THE WEB, IN CONTEXT

There is a lot of ambiguity in language, for example the word "close" can refer to both

proximity (those cars are close to each other) or state (close and open, in reference to

electronics for example gates and switches, or something as common as a door) but it is the

context in which the word is used that often determines its meaning. As the Web is and must

be indexed automatically due to its size, computers are left to analyze the content and

though there is much research into the analysis and processing of text it is still far from

perfect and can be a very resource intensive process. An extension to the XHTML markup

language called RDFa has been developed to allow machines to easily 'read' web pages, giving

them the ability to look at the data between HTML tags and determine the meaning of the

data. For example, whether it refers to a person, or a place, or any number of other things

(W3C, 2008). RDFa allows the representation of RDF data as XHTML attributes.

2.2.1: RDF AND RDFA

RDF (the Resource Description Framework) is a language for providing information about

resources on the Web (W3C, 2004). The RDF specification is built on the XML syntax. The

intention for RDF is that it can be used in situations where the information is to be processed

by computers and not individuals, for example data mining, or comparisons. RDF is based on

the idea that web resources are identified using URIs (uniform resource identifiers) and these

URI’s can be described with properties and values.

 Chapter 2: Literature Survey 8

8

RDFa allows RDF data to be embedded into an XHTML page as tag attributes:

<tag attribute=”value”></tag>

This allows a content creator to say

This page was created by Some Person.

The code behind this page that represents the link will also state that the link points to the

page of a person. This page may then have elements that verify this, like the person’s name,

or sites they have worked on. Identifying people’s details is just one of many uses of RDFa,

and it is already an existing ontology but there are many including those for books, products

and images.

An ontology is a description of entities and their relationships, which is written in XML and

designed to be read by computers and not humans.

2.2.2: SEARCHING CONTENT VS. CONTEXT

When currently searching the Web there is little context analysis, for example some names

are ambiguous in the sense that they are made up of words which have another meaning in

language. With contextual information available a user could then search and specify in which

context they were searching, for example they could specify that they are (or not) looking for

a person.

2.2.3: STORING RDFA DATA

A system has been developed for storing RDF called a triple store. It stores identities that are

constructed from triplex collections of strings. The triplex collections represent a relationship

between a subject, predicate and object (Jack Rusher). Storing the data is the less technically

challenging part, the feature of many RDFa triple stores is that they allow for logical querying,

in a prolog style syntax which allows for logical relationships to be created.

2.3: CRAWLING AND INDEXING

There are numerous projects in place to index the Web for different purposes. A very

common reason is to provide data for a search service, for example Google, Yahoo and Bing

(formerly Live Search). But there are other reasons, as previously mentioned Archive.org

indexes data so that it can keep a historical record, and the company Majestic-12 provide

linking relationship statistics to companies and individuals who carry out Search Engine

Optimization services (used to improve search engine rankings).

‘Indexing’ the Web as a whole has two major parts, crawling the Web to find and download

all the pages and then indexing those pages by parsing them and creating a searchable index

structure.

2.3.1: GENERAL INFRASTRUCTURE

The simplest logical process for crawling the Web is as follows, it assumes that we have a list

of URLs to crawl and that it keeps track of the URLs that have already been called:

about:blank

 Chapter 2: Literature Survey 9

9

1. Add a ‘seed URL’ (a URL to start with) to the crawl list

2. Download the next entry on the crawl list if has not already been downloaded before

3. Parse the HTML extracting URLs.

4. Save the HTML for indexing

5. Add those URLs to the crawl list

6. While the crawl list is not empty go to step 2.

This basic process has issues and limitations that are considered later on.

This simplest logical process for indexing the crawled data is as follows, it assumes (crudely)

that we have a big folder with all pages in them and that they are deleted after being indexed

and that for each word we have a list of pages in which they occur:

1. Load the next page in the folder

2. Make a set (no duplicates) of all the words that occur in the page

3. For each word in the set

a. Add the URL of this page to the list for word

4. While there are still pages in the folder go to step 1

Once again, this basic process has issues and limitations which do not consider the advanced

structure of web pages and this will also be addressed later on.

2.3.2: CRAWLING AND INDEXING IN DETAIL

Crawling is essential to indexing the Web as without the data from the crawl there would be

nothing to index. The procedure of crawling can be a very intricate and delicate one for, if any

one component of the crawler process does not perform as expected it could cause it to slow

down and perform inefficiently or behave impolitely and be banned from many web servers.

2.3.3 OVERALL PERFORMANCE

Google (Brin, et al., 1998) acknowledged that hardware performance is a very serious

consideration when processing large amounts of data, and that slightly optimizing one area of

code can shift a bottleneck from where it was to somewhere else (usually the next slowest

part of the system) rapidly. For the initial big crawl that Google carried out, of 24 million

pages, they ensured that the indexer was optimised just enough to run faster than the spider

so that it would not be the bottle neck and the spider was the limiting factor on performance

at the time. It was also observed that disk access is a significant area of their systems that

hindered performance, with disk seeks taking around 10ms the data structures and systems

were designed to minimise the number of disk seeks, either keeping indexes in memory or

optimizing data structures so that sequential access was possible in most cases.

There will always be bottlenecks in large scale web spiders and indexers, and they are likely

to occur where less has been invested in a certain resource. Some can be dealt with or

tolerated, others may cause the system to stop working, for example a lack of available disk

space will stop a spider but bandwidth limitations on an internet connection may cause the

spider to run slower, but will not stop it entirely. The ideal situation would be where the Web

could be crawled and indexed so quickly due to an abundance of resources that the system

could either wait until, of finish, just as the next crawl was due. If the system finishes quickly

 Chapter 2: Literature Survey 10

10

it will still have bottlenecks, they will just be negligible as they do not affect the planned use

of the system.

2.3.4: BANDWIDTH

Even if not all pages are to be indexed when crawling the Web most must be downloaded so

that the links on the pages can be followed as these or subsequent links may lead to a page

that does need to be indexed. Based on the previous assumptions after examining reliable

sources (Google, 2008) (Majestic-12, 2009) that there are at least 1.3 trillion pages on the

Internet the following could be reasonably assumed.

(Building Nutch: Open Source Search, 2004) suggests that on average a web page would be

about 10 KB in size, as noted earlier, this estimate is several years out of date, but it is

sufficient for this example. The request and data header add about 0.5 KB (based on the

earlier HTTP example in section 2.1.4) so it will be assumed (very conservatively) that the

total bandwidth to download a page including headers and overhead is 10.5 KB (which is 86

Kbits). So the bandwidth for 1.3 trillion pages would be:

 13,977,600,000,000,000 Bytes or

 111,820,800,000,000,000 Bits or

 12.4 PBytes or

 111.82 PBits

Currently, one of the fastest home internet connections is about 50 Mbit/sec (Broadband.org,

2009). If it is assumed a connection of this speed is used and that it will always access pages

at full speed with no delays, and disregarding the fact that home internet connections have a

slower upload rate than download rate, the following calculation holds:

 () ()

 ()

2,236,416,000 seconds is 37,273,600 minutes, or 621,226 hours, or 25,884 days, 70 years.

This figure in reality would be greater because removing the assumptions, and introducing

reality would add many time delays. Another factor ignored is the bandwidth taken to find

out if a URL contains an image, binary file or other non-html content, as they would need to

be ignored too. Only the header of the response needs be retrieved but this is another 0.5KB

per request which will add more delays.

Corporate broadband services run much faster, so a faster connection would speed up the

process as more concurrent requests could be made to different sites simultaneously, but

network and server delays would not be improved.

2.3.5: STORAGE

Crawling and Indexing all of the Web requires lots of disk space (as well as bandwidth) and

there are several considerations to be addressed. The conservative estimate made in section

2.1.1 suggested that 113PB may be required to store all pages for indexing. Other lists and

indexes involved may a large volume of space (uncompressed). A good compression scheme

could reduce it by up to 75% (Brin, et al., 1998) cutting the space required down to 28.25PB.

 Chapter 2: Literature Survey 11

11

No physical disk is currently that big, so one way or another, the data would need to be split

up. It is possible that some indexes may be bigger than one physical disk too.

The data collected as well as being vast is quite expensive in terms of resources required to

gather it, as it takes a lot of CPU time and bandwidth, so it could be very detrimental if all or

part of it were lost. Unfortunately backing up data requires up to double the disk space used

to make one whole backup, or less if the overhead of checksums are introduced (AC & NC,

2009).

The Google File System (Ghemawat, et al., 2003) tackles both these issues simultaneously

whilst also trying to maximise performance and concurrent use. There are several

assumptions made based on how they store data, but it works as follows:

In each cluster there is one master server and multiple data (chunk) servers. The data, saved

as files are divided in to 64Mb chunks. Each chunk has a replication count (with a default of 3)

and these chunks are stored on at least that number of chunk servers. The master server

keeps track of where files exist, and manages locks and access. The concept is highly detailed

and the intricate detail of how it works is more than needs to be covered here.

2.3.6: DATA STRUCTURES

Google (Brin, et al., 1998) took much care, even for their first major index to use very

carefully designed data structures to store information, they acknowledge that generally the

performance of computers improves but that disk seek time is still around 10ms, and for that

reason they optimize their structures to avoid disk seeks if possible. Testing whether a URL is

new or not could be quite resource intensive, for example if a simple list was created of all

URLs seen so far it would then have to be searched each time a new URL was found and as

the list got bigger the search would get slower. For text processing and storage there are

several common tree based data structures which could prove beneficial for a fast lookup,

but if stored on disk they are expensive in terms of space as overhead is added in the form of

pointers (Goodrich, et al., 2004).

Google (Brin, et al., 1998) uniquely checksum their URLs which shortens them and allows for

a quicker comparison and binary search is used to link the checksum to an ID which can then

be used to find details about the URL. Larger data structures which will not need rapidl

searching or iterating are compressed to save on resources (disk space), which is a calculated

plan as the cost of performance has been traded against disk space gain.

2.3.7: POLITENESS

Politeness is a term used to describe how a spider behaves when it crawls the Internet. It

generally takes into account whether the spider obeys limitation rules of the site (or not) and

how aggressive the spider is towards an individual web server – in other words, how often

does it try and access pages from that site and considering that it could cause a Denial of

Service error for other, real users. A polite spider will obey all limitation rules and will not

query any individual site too frequently.

(RE)CRAWLING

 Chapter 2: Literature Survey 12

12

Assuming a spider uses the basic crawling logic described in section 2.3.1, it instructs the

spider to use the next URL off the list to crawl. If the crawler is set to start on the homepage

of a fairly large site, there will probably be at least a handful of links on that site that point to

other internal pages, and when those pages are followed there will likely be a few more links

on each page which are unique and lead to other pages on the site. Before long the crawler

will spend most of its time on this one site `until it has visited every URL at which point it will

then probably get hung up on another large site.

Consideration must be taken when processing the ‘crawl list’ so that it is not done

sequentially, unless the process of adding to this list is not sequential. Though this extra

consideration will require processing time, and add general overhead – it is essential to

prevent the IP(s) of the spider from being banned by vigilant webmasters who are annoyed

by handful of impolite spiders preventing their real users from gaining access (Cody, 2001).

If there is a need to maintain a reasonably up-to-date index then the rate at which the site is

recrawled must also be determined and set to a sensible frequency. For a small crawler

project, the resources available for the system may force this to be several months or more,

but large search engine providers can afford to recrawl at least once a month, if not more

frequently. The robots restrictions (discussed later) does allow a crawl and recrawl delay to

be specified, however it is not an official extension to the robots specification and for that

reason many spiders ignore it (Wikipedia, 2009).

ROBOTS

There is a two part system in place used to explicitly inform spiders (otherwise known as

Robots) of what they are not allowed to access and to crawl on a particular domain.

One part of this system is known as the Robots Exclusion Standard. There is no official

standard or RFC for the Robots Exclusion Standard specification; it was created by consensus

in June 1994 (Pages, 1994). It consists of a text file that resides in the root of the website,

called ‘robots.txt’. The address of the robots file for www.google.com would be

http://www.google.com/robots.txt for example.

Robots files can specify instructions for all robots and specific robots. An example would be

as follows:

#This is a valid comment

User-agent: * #This line says these rules apply to all robots

Disallow: /paths

Disallow: /path/

User-agent: Googlebot

Disallow:

The first line is comment, denoted by the # prefix. The comment on the second line is also

valid and does not affect the text preceding it. The first user agent specifies a wildcard; this

means any spiders that are not otherwise explicitly addressed should use these rules, that

means Googlebot will ignore this section as Googlebot has its own specification.

 Chapter 2: Literature Survey 13

13

Googlebot is allowed everywhere as the disallow statement is blank, in other words it is not

disallowed anywhere.

Any other search engine is not allowed to access any path prefixed by the disallow entries:

 /path/file is not allowed

 /paths/file is not allowed

 /pathscanbelong is not allowed

 /pathtest is allowed

The other part of the system can be implemented in the head section of a web page in the

form of meta tags. It can tell the spider whether or not the links can be followed or indexed

(Wikipedia, 2009). Common values can specify that the page is not indexed at all, the page is

allowed to be indexed but no links are followed and that the page is not to be cached. Unlike

robots.txt, some spiders do ignore meta tags to preserve the integrity of their results.

2.4: DISTRIBUTED COMPUTING

Several serious attempts to crawl the Web (many successful) have used distributed

computing to achieve this (Majestic-12, 2009) (Brin, et al., 1998) (Building Nutch: Open

Source Search, 2004). Due to the vast amount of data collected from a crawl distributed

storage is required. Network Attached Storage is still distributed as it spans the data

(distributes) over many drives. Google distribute the data and workload over many

computers, exact figures are not known as Google keep their current workings very secret

but it is clear how much data they must store (as a minimum) and it can be reasonably be

assumed that there are lots (possible 800,000 plus (Dean, 2008)).

Another very good reason for using distributed computing (with cheap hardware) is reliability

(Dean, 2008). Jeff Dean of Google outlined the failure rates and servers affected that occur

within a year of installing 1000 servers:

 Power distribution failures (500-1000 servers)

 20 rack failures (40-80 servers)

 12 router reloads (takes down network services)

 3 router failures (networks become disconnected instantly)

 1000 individual machine failures

 1000’s hard drive failures

High cost machines could easily have similar specifications however have a greater cost due

to more reliable hardware. Cheaper machines mean permanent failures cost lest to rectify,

and unlike supercomputers or mainframes, they can be slowly built up. Distributed

computing allows for greater redundancy if the infrastructure design is well planned as key

points of failure can be avoided by spreading services on systems or geographically, unlike

bigger non-distributed systems (such as mainframes).

 Chapter 3: Requirements and Analysis 14

14

CHAPTER 3: REQUIREMENTS AND ANALYSIS
The main aim for this project is to create a well-structured and efficient web spider that is

capable of crawling the Web and indexing pages that contain RDFa data. Optionally a front-

end will be created which will be in the form of a search service (for example a web based

search engine), however this feature will be time permitting and not essential.

Comprehensive result ranking will not be considered as this in itself presents an enormous

challenge which many organizations have been working on for years and they are continually

tweaking and perfecting the methods used.

3.1 OVERALL STRUCTURE

As crawling and indexing the Web can take a while, and may not finish in the time available,

there is the need for the data to be accessible before a complete crawl has finished so that it

can the completeness and validity of the data can be collected, the following proposes to

tackle this problem.

Figure 3.1 The basic structure of the RDFa Spider

The crawler system, indexer system and front-end search provider will all run simultaneously.

Due to the current resources available a large crawl could take months, running the systems

at the same time will allow nearly immediate access to the data gained providing the indexer

is at least as fast as the crawler.

Indexer Crawler

Search

Front-End

Data Storage

Front-end Search

Crawler

Indexer

 Chapter 3: Requirements and Analysis 15

15

3.2: CRAWLER STRUCTURE

The crawling system needs a distributed structure so that isolated failures do not affect the

system as a whole. Based on research it is clear that unexpected failures are frequent, and

the crawler needs to be able to cope with different types of failure.

Figure 3.2 – Crawler Connectivity

Figure 3.2 shows the connectivity structure of the crawler system; however the data servers

are likely to be a series of flat files on one or more drives unless time permits the

implementation of a more advanced storage system.

3.2.1: CRAWLERS

The crawler process is the one that does the majority of the work, and it relies on all the

other Crawler Services. (None of the other services are reliant on each other).

The order of logic will be roughly as follows:

1. While (crawler running)

a. Get next URL from ToDo Server

b. Download URL

c. Parse URLS to Vector<string>

d. For each URL

Data Master

To Do Server

Insert Server

Crawlers

Data Block Servers

Status Monitor

URL Cache

Robots Lookups

 Chapter 3: Requirements and Analysis 16

16

i. Check robots from memory or server

1. Cache robot in memory if not cached

ii. Check url cache local or remote

1. Add to local url cache (last n entries) if not cached

iii. If not cached and not restricted by robots send to Insert

e. If page contains RDF data save to Repository (data storage)

f. Clean Expired Caches

2. Go to step 1

This logic is based on the previous system but it has extra local caching steps added as to

reduce network and core server load on other services. Extra compensation will be needed to

cope with network or external service failures, causing the crawler to suspend its work until

connections have been restored.

To speed up the crawling process as much as possible, the method which downloads pages

will be enhanced to support common server compression standards so that less bandwidth

and time is required to request a page.

3.2.2: ROBOTS LOOKUP

The crawler needs to be polite in the way it conducts itself around the Internet so that it does

not cause webmasters to defend their sites by blocking the crawler, and even though obeying

robots is good, the need to check robots can cause problems too. These are addressed below:

Every time a link is discovered by the crawler, a check needs to be performed to ensure that

this URL is allowed to be crawled. This must be done by checking the robots file for the

domain of the URL, however it would be very inefficient and in itself, impolite, to check the

robots file for a domain every time a URL is discovered. Instead, the crawler will need to

request the robots data from the Robots server, which will then check its own cache of past

lookups. If it has cached the data and the cache entry is not too old then the data will be

returned from the cache, otherwise it will be looked up from the domain requested and

cached for future use.

If a robots file is not available, either due to not existing or a temporary error, this situation

must also be recorded and an appropriate expiry time must be set. For example, if the error is

that the file cannot be found on the server then it should be assumed the robots file does not

currently exist, but should be rechecked after a while, whereas if the error indicates the file is

temporarily unavailable it should be checked more frequently.

To maintain the ability to quickly look up data, several indexes will be used as it can be

reasonably assumed that the robots data cache could become very large very rapidly. An on-

disk index of all the data will be stored as well as a smaller in-memory index of key

separations in the data, for example alphabetic boundaries.

3.2.3: INSERT AND TO DO

A list must be maintained of the URLs that still need crawling, the changes to the list must be

atomic, and the retrieval of entries from the list should not be sequential so that the crawler

avoids getting hung up on one big site.

 Chapter 3: Requirements and Analysis 17

17

The Insert and To Do are two separate services, though this is only to assist in serialization of

data transactions, in reality they form one system as they manage one list, the list of URLs still

to be crawled. New URLs found are added to the end of the list whereas the next URL to be

crawled is selected at random, this is to prevent over-crawling one site in a short space of

time. It is not a flawless solution as by chance it could select the same site repeatedly, but the

random selection has minimal processing overhead compared to calculating an ideal next

crawl. When the next URL has been retrieved from the list it is removed so that it cannot be

crawled again.

3.2.4: THE URL CACHE

The crawler needs to know which URLs it has seen, either processed or added to the crawl

queue. This cache needs to be able to insert entries and check if they already exist very

rapidly with minimal overhead.

Figure 3.3 – Trie Structure

The URL cache will be based on a trie structure (figure 3.3), however the current

implementation has several unnecessary pointers as the current trie is unsorted, being able

to iterate in both directions is not required. To aid in faster lookups the strings will also be

compressed as heavily as possible using a lossless compression, this will give less tree depth

to search and will save space. The URL strings will not need to be decompressed in part, just

as a whole.

3.2.5: DATA STRUCTURES

The crawler will process a considerable volume of data, much of which must be stored. To

optimize the operations involved, logical data structures must be used so that mutating and

reading the data is as efficient as possible. This section considers the structures required to

achieve this.

There are four main types of data that need to be stored, the cache entries, the robots data,

the pages crawled (the repository) and the RDFa data extracted. It is possible, if a search

interface is implemented, that reverse indexes may also need to be stored.

URL CACHE

The trie entry structure will be as follow and each level of the tree will be sorted.

 Chapter 3: Requirements and Analysis 18

18

nnnnnnnn pppppppp cccccccc iiiiiiii d

nnnnnnnn Pointer to Next 64bit integer
pppppppp Pointer to Previous 64bit integer
cccccccc Pointer to Child 64bit integer

iiiiiiii ID 64bit integer
d Data 1 character/byte

This structure is 33 bytes per tree entry. It is yet to be seen whether or not this will save

space in the long run, but if it does not then it will have to be redesigned. The ID will allow

the URL cache to serve as a lookup table linking URLs to other data which can then simply be

represented by the URL’s ID, for example the URL’s page content. During the indexing process

this will save disk space as most URLs will be longer than 8 bytes (a 64 bit integer).

ROBOTS

The data extracted from robots files will vary in length and cannot be stored in a static length

structure. The indexes will also have dynamic entries as domain length will vary.

The robot data entry itself will be as follows:

lll d0…dlll

lll The length of the proceeding data, limited to 16 Mb (3 bytes)

d… The data itself

As the entry implies, the cache will hold no more than 16 Mb of robots data, in reality this is

likely to be more than required, but a two-byte length definition limits to 65Kb which may

prove to be too little.

The robots entries themselves do not have any information of which domain they correspond

to, this is all saved in the on-disk index, which has the following entry format:

m n0…nm oooooooo

m The length of the domain (256k limit)

n… The domain

oooooooo Data offset in main data file

REPOSITORY

The pages which have been crawled and contain RDF data need to be stored for indexing.

The repository entry will be stored in the following format:

iiiiiiii lll d0…dlll

iiiiiiii The URL ID 64 bit integer

lll The length of the data (limited to 16Mb) 24 bit integer

d… The data itself

 Chapter 3: Requirements and Analysis 19

19

The structure deign does not allow for pages greater than 16Mb in size to be stored, and this

is not likely to cause a problem as most pages are small, the rich content (such as images etc)

is often the bulkier set of data and that would not be collected.

RDF (TRIPLE STORE)

The RDF data collected will need to be stored, and there is a commonly used system called an

RDF Triple Store, for this project such a system needs to be utilized.

COMPRESSION

Resources for this project are limited, specifically disk space – it is therefore necessary that

the system is able to compress its assets if disk space becomes limited.

The disk space available for this project will be limited, and currently it is estimated to be just

over 1Tb, due to this it is quite likely that indexes and data may need to be compressed due

to resource limitations. Indexes will be compressed using Huffman coding as this allows

sections to be decompressed without having to decompress all the data. Stored pages will be

compressed to a higher degree as they will only be decompressed as a whole. Compressing

data will also benefit other areas of the system, such as the network, as there will be less

data to shift around if it decoded upon receipt.

3:3: INDEXER STRUCTURE

The indexer is likely to be a resource intensive process, especially with regards to CPU time.

For this reason the indexer needs to be capable of running on several systems concurrently

and in such a way that the instances do not interfere with each other.

The indexer will have a less distributed structure compared to the Crawler; it will run as a

single service accessing the data store. It will be capable of running concurrently on several

machines to improve overall processing time.

It will need to process all pages in the repository, collecting all the RDFa tags used on the

pages and sending them to a triple store.

3.4: STORAGE

The volume of data to be stored could be large and filling a disk could stall the system if the

design of the system does not cope with spanning data over multiple disks and servers so it is

essential that data can be reliably be divided and stored.

There are various different types of data to be stored, and this data will be stored in

appropriate files on some of the servers. The need to split up data is probably going to be

mandatory as the crawling and indexing will produce lots of output data, probably more than

will fit on one disk, so the data will have to be split over many drives and servers. Logically

splitting indexes and repositories will allow them to be search simultaneously and hence save

time.

If time permits a basic distributed file system will be implemented. For easy implementation

it will behave like a standard C++ stream, but when saving or reading data it will access the

 Chapter 3: Requirements and Analysis 20

20

server in which the data is stored in (as determined by a master index) and relay the data

from the storage node to the client.

3.5: SEARCHING

The search feature will be implemented if time permits (it is not a requirement however it

would provide a user friendly interface with the data). It may require the creation of other

systems, and changes to existing ones. The indexer will need to create reverse indexes that

are rapidly searchable. The search interface will be a web site where the user can input a

query, with the option to search data from specific ontologies.

3.6 EVALUATION

The final system will need to be evaluated to determine whether it has become a suitable

solution for the problem. It will be compared against the original requirements, where an

analysis will be made comparing the similarities and differences, why they exist and how they

have or have not benefitted the project.

 Chapter 4: Progress 21

21

CHAPTER 4: PROGRESS
Considerable progress has been made so far, the system has been able to run a simple

distributed spider on a cluster of 10 computers and crawled about 400,000 URLs during a

brief test. The programming language used so far and will continue to be used is C++, the

main motivation for using it is because it is very portable between common platforms, but

this is strongly backed up by the high performance of well written code due to it not being

interpreted or running in a virtual environment like many popular languages today (Java and

C# are two examples). There is currently ongoing consideration for using Python for part of

the crawler as natively it supports all the functions required whereas C++ requires many

custom or external libraries; fortunately Python can also run on both Windows and Linux. In

this project the systems and services will be run on Linux so that software licensing costs are

not an issue and because it is heavily customizable for both flexibility and performance.

4.1: HARDWARE AND INFRASTRUCTURE

At this point, a small cluster of 24 computers are available which can be customized and used

for running this system. They have been set up carefully so that they can easily be

reconfigured and reinstalled if the need arises from a local software repository, a task which

completes in less than 5 minutes. The CentOS linux operating system installed has been

customized to allow custom tasks to run when the system starts. They are connected via a

100Mbit 48 port managed switch with dual gigabit uplink. The plan is to install them at the

University of Sheffield as their internet connection’s ability is far greater and they have a

server room suitable for cooling, powering and connecting the cluster. On boot the machines

are configured to download a script (the boot script) from a master server, that script then

copies any new files to the machine and executes any applications listed for that node.

4.2: SOFTWARE AND TESTS

The data backend is currently MySQL which is running on a powerful machine. All the data is

currently stored on one disk. This server holds a database which stores all data from the

crawl and a few configuration tables, except the ‘list of URLs seen’.

Currently there are several test applications and common classes for various parts of the

system which perform a required function, but they do so crudely and without optimization.

The existing applications are detailed below:

4.2.2: RWS_COMMON

The common superclass contains many classes which are provided by higher level managed

languages, including:

 download_file Downloads a file to a string, and supports timeouts

 global_settings Allows reading of settings from the database

 file_pointer_operations Converts arrays to 64 bit integers

 logging Writes log entries to the database

 mysql_client Wraps the c mysql library

 robot A structure to load and check robot data

 Chapter 4: Progress 22

22

 string_functions Common string functions like replace and split

 tcp_client A synchronous tcp client library

 tcp_server An asynchronous tcp server with overridable processing

function

 unix_environment Provides access to unix OS statistics and data

 url A structure to break down a url and analyze parts of it

4.2.3: RWS_HEARTBEAT_SERVICE

The heartbeat service is started by the boot script; it reads from the database the host and IP

of the system manager and connects to it. It maintains a connection persistently, if the

connection is lost it retries repeatedly until the connection is reestablished. Every second it

sends the server time, free, used and total memory, CPU usage, CPU speed and the processes

running. This allows all the servers to be monitored from one place.

4.2.4: RWS_CACHE

The cache service implements a trie structure and it listens on a TCP server. It responds to

requests to check if a URL has already been seen, it checks the trie and sends the result. If not

seen it adds it to the try as it assumes that a request implies it has now been seen. The

crawler checks every URL it discovers against the cache.

4.2.5: RWS_ROBOTS

The robots service acts like a form of caching proxy. The crawler asks the robots service for

robot data for a specific domain, for which it then queries the database for. If the data exists

it returns it, otherwise it requests the data from the domain’s webserver and stores it. All

stored data expires after a predetermined amount of time.

4.2.6: RWS_SQL_INSERT

The SQL insert server listens on a TCP server for URLs to be crawled. It listens asynchronously

then inserts the URLs in a serialized fashion to the ‘To Crawl’ list in the database. The crawler

sends the URL to this server after checking the cache and robots.

4.2.7: RWS_TODO

The ToDo server returns the next URL to be crawled via a TCP server. All the crawlers call this

when they have finished with one URL and needs another. The ToDo server requests a

random URL from the ‘To Crawl’ list, removes it from the list and sends it to the client.

4.2.8: RWS_CRAWLER

The crawler ties all the other services together. It currently runs on 20 threads, and each

thread does the following:

1. Request the next URL from the ToDo Server

2. Download the URL

3. Parse the URL

4. For each link:

a. Check its valid

b. Check robots for the link

c. Check the cache

 Chapter 4: Progress 23

23

d. If b and c are ok then send to SQL Insert

5. Go to step 1

Unfortunately it currently gets stuck at some point, it seems to be caused by the robots

server but this is something that needs investigation.

4.2.9: SYSTEM MANAGER

The system monitor runs a TCP server and waits for connections from the heartbeat service.

It displays the data received in a detailed list with a total or average at the bottom. It also

shows the common variables which are pushed to the database by many services such as

cache size, URLs crawled and more.

Figure 4.2: System Manager

 Chapter 5: Conclusions and Project Plan 24

24

CHAPTER 5: CONCLUSIONS AND PROJECT PLAN
At this point there is a very basic spider (crawler) which is capable of running several crawlers

on a distributed computer system. It has several performance and reliability related issues

which need addressing. Research indicates that there are several ways that the current

infrastructure can be improved, thus increasing reliability and performance. The basic

applications that make up the spider will be rewritten so that they can be improved from the

bottom up, this will add much of a time delay because they mainly tie together common

classes and functions.

A web based interface may be created to allow access to the data (a search engine) if time

and resources permit.

5.1: PROGRESSION PLAN

 Task
Jan 2010 Feb 2010 Mar 2010 Apr 2010

4 11 18 25 1 8 15 22 1 8 15 22 29 5 12 19 26

1
Revise Heartbeat
System

2 Improve Robots Cache

3 Improve URL Cache

4
Replace MySQL ‘URL
List’ with flat files

5 Revise Crawler

6 Create Repository

7 Begin Crawling

8 Create Indexer

9 Begin Indexing

10
Update System
Monitor

11
Evaluate System
Performance

12
Performance
Enhancements

13
Implement Search
Front End *

14 Evaluate Project

15 Write Final Report

*Not compulsory and time permitting

 References and Appendixes 25

25

REFERENCES
AC & NC. 2009. Raid Levels. AC & NC. [Online] 1 1, 2009. [Cited: 11 21, 2009.]

http://www.raid.com/04_01_0_1.html.

Alexa. 2009. Top Sites. Alexa. [Online] 18 11, 2009. [Cited: 18 11, 2009.]

http://www.alexa.com/topsites.

Brin, Sergey and Page, Lawrence. 1998. The Anatomy of a Large-Scale Hypertextual Web

Search Engine. s.l. : Standford University, 1998.

Broadband.org. 2009. Fastest Broadband Speeds - Top 3 Speeds. Broadband.org. [Online] 11

1, 2009. [Cited: 11 25, 2009.] http://www.broadband.org/fastest_broadband.html.

Building Nutch: Open Source Search. Cafarella, Mike and Cutting, Doug. 2004. 2, s.l. : ACM,

2004, Vol. 2. 1542-7730.

Cody, Daniel. 2001. Using Apache to stop bad Robots. Evolt.org. [Online] 08 22, 2001. [Cited:

11 25, 2009.] http://evolt.org/article/Using_Apache_to_stop_bad_robots/18/15126/.

Ghemawat, Sanjay, Gobioff, Howard and Leung, Shun-Tak. 2003. The Google File System.

s.l. : ACM, 2003.

Goodrich, Michael T. and Ramassia, Roberto. 2004. Tries. Data Structures and Algorithms in

Java. s.l. : Wiley, 2004.

Google. 2009. Introducing Rich Snippets. Google Webmaster Central Blog. [Online] 5 12,

2009. [Cited: 11 19, 20009.]

http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html.

—. 2008. We knew the web was big. The Official Google Blog. [Online] Google, 7 25, 2008.

[Cited: 11 18, 2009.] http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html.

Internet Archive. 2009. PetaBox. Internet Archive. [Online] 11 20, 2009. [Cited: 11 20, 2009.]

http://www.archive.org/web/petabox.php.

Internet World Stats. 2009. Internet Usage Statistics. Internet World Stats. [Online] 11 18,

2009. [Cited: 11 18, 2009.] http://www.internetworldstats.com/stats.htm.

Lardinois, Frederic. 2009. Google Patents Its Homepage. ReadWriteWeb. [Online] 9 2, 2009.

[Cited: 11 20, 2009.]

http://www.readwriteweb.com/archives/google_patents_its_homepage.php.

Majestic-12. 2009. Majestic SEO. Majestic SEO. [Online] 11 18, 2009. [Cited: 11 18, 2009.]

http://www.majesticseo.com/.

Matthew Komorowski. 2009. A History of Storage Cost. mkomo.com. [Online] 07 01, 2009.

[Cited: 11 20, 2009.] http://www.mkomo.com/cost-per-gigabyte.

 References and Appendixes 26

26

Network Working Group. 1999. Hypertext Transfer Protocol -- HTTP/1.1. IETF. [Online] 5 1,

1999. [Cited: 11 22, 2009.] http://tools.ietf.org/html/rfc2616.

—. 1998. RFC2460. IETF Tools. [Online] 12 1, 1998. [Cited: 11 20, 2009.]

http://tools.ietf.org/html/rfc2460.

Pages, The Web Robots. 1994. A Standard for Robot Exclusion. The Web Robots Pages.

[Online] 5 1, 1994. [Cited: 11 25, 2009.] http://www.robotstxt.org/orig.html.

W3C. 2008. RDFa Primer. W3C. [Online] 10 14, 2008. [Cited: 11 19, 2009.]

http://www.w3.org/TR/xhtml-rdfa-primer/.

Wikipedia. 2009. Meta Element. Wikipedia. [Online] 11 14, 2009. [Cited: 11 25, 2009.]

http://en.wikipedia.org/wiki/Meta_element#The_robots_attribute.

—. 2009. Robots exclusion standard. Wikipedia. [Online] 11 12, 2009. [Cited: 11 23, 2009.]

http://en.wikipedia.org/wiki/Robots_Exclusion_Standard.

